首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Phase modulating spatial light modulators (SLMs) can be used to alter the shape of a laser wavefront to achieve a deflection or change in the shape of a laser beam. This paper reports the results of characterization, simulation and optimization of a one-dimensional liquid crystal (LC) SLM. The device has a large ratio between LC layer thickness and pixel pitch that results in a fringing field between pixels. In effect, the applied phase patterns will be lowpass filtered and the loss of high frequency components limits, for instance, the usable steering range. A method is presented where intensity measurements in the far field are used to determine how the phase modulation at the SLM is distorted. The inhomogeneous optical anisotropy of the device was determined by modelling the liquid crystal director distribution within the electrode-pixel structure. Finite-difference time-domain (FDTD) simulations were used to calculate the light propagation through the LC. The simulated phase distortion was compared with the experimental results. A voltage compensation scheme to improve the diffraction efficiency was developed utilizing the measured and simulated results. It is demonstrated that a modification of the voltage patterns can give a better realization of high frequency components in the phase distribution and an increase in maximum steering angle by a factor two.  相似文献   

2.
Lu SH  Wang CY  Hsieh CY  Chiu KY  Chen HY 《Applied optics》2012,51(9):1361-1366
We present a polarization Linnik interference microscope with a nematic liquid-crystal (NLC) phase shifter for full-field optical coherence tomography of high-quality images. The rotating half-wave plate in conventional achromatic phase shifters was replaced by three liquid-crystal (LC) half-wave plates for implementing three-step phase-shifting interferometry. Thus, the NLC device generates phase shifts quickly and has no vibrations. In addition, the phase shift can be set to an arbitrary value between 0 and 2π by altering the azimuth angles of the LC cells. A tomographic image is retrieved from three sequential phase-shifted interferograms by using a three-step algorithm. The experimental results confirm the feasibility of the proposed technology.  相似文献   

3.
Ogiwara A  Hirokari T 《Applied optics》2008,47(16):3015-3022
Anisotropic diffraction gratings based on a holographic polymer-dispersed liquid crystal (HPDLC) are realized by interferometric exposure using a spatial light modulator (SLM). The SLM is used in the HPDLC grating formation for anisotropic holographic recordings of two-dimensional polarization states for an incident light beam. The diffraction efficiency for P-polarization and the distinctive ratio of diffraction efficiency in P-polarization to that in S-polarization increases with the signal level applied to the SLM. The resulting volume gratings exhibit diffraction efficiency of more than 60% and a distinctive ratio of diffraction over 100. The microscopic origin of the anisotropic property is investigated by an optical polarizing microscope. The novel characteristics of the anisotropic diffraction properties of HPDLC are applied to an image reconstruction technique.  相似文献   

4.
We report preliminary results concerning a free-space optical switch between single-mode fibers with a ferroelectric liquid-crystal (FLC) spatial light modulator (SLM). In particular, we show experimentally that such a device can operate in a polarization-insensitive manner. The influence of the geometrical and physical features of the FLC SLM on the overall performance of the optical fiber switch are also discussed.  相似文献   

5.
Accurate modeling of a high-resolution, liquid-crystal-based, optical phased array (OPA) is demonstrated. The modeling method is extendable to cases where the array element size is close to the wavelength of light. This is accomplished through calculating an equilibrium liquid-crystal (LC) director field that takes into account the fringing electric fields in LC OPAs with small array elements and by calculating the light transmission with a finite-difference time-domain method that has been extended for use in birefringent materials. The diffraction efficiency for a test device is calculated and compared with the simulation.  相似文献   

6.
We demonstrate the use of a phase-only liquid-crystal spatial light modulator (SLM) for polarization-controlled rotation and alignment of an array of optically trapped birefringent particles. A collimated beam incident upon a two-dimensional lenslet array yields multiple foci, scaled to produce optical gradient traps with efficient three-dimensional trapping potentials. The state of polarization of each trapping beam is encoded by the SLM, which acts as a matrix of wave plates with computer-controlled phase retardations. Control of the rotation frequency and alignment direction of the particles is achieved by the transfer of tunable photon spin angular momentum.  相似文献   

7.
Holographically recorded surface relief gratings in dry, self-developing acrylamide based photopolymer were used to fabricate two types of switchable liquid crystal (LC) device. One is an electrically switchable LC diffraction grating and the other is an electrically switchable polarization rotator. The electrically switchable diffraction grating was characterized by measuring the dependence of the intensity in the first diffracted order on the applied electric field. The polarization rotator was characterized by studying the influence of the applied electric field on the twist angle and the variation of intensity in the zero and the first orders of diffraction.  相似文献   

8.
Hwang DK  Rey AD 《Applied optics》2005,44(21):4513-4522
The finite-difference time-domain (FDTD) method is used to compute propagation of light through textured uniaxial nematic-liquid crystal (NLC) films containing various types of twist disclination (defect) lines. Computational modeling by the FDTD method provides an accurate prediction of the optical response in multidimensional and multiscale heterogeneities in NLC films in which significant spatial optic axis gradients are present. The computations based on the FDTD method are compared with those of the classic Berreman matrix-type method. As expected, significant deviations between predictions from the two methods are observed near the twist disclination line defects because lateral optic axis gradients are ignored in the matrix Berreman method. It is shown that the failure of Berreman's method to take into account lateral optic axis gradient effects leads to significant deviations in optical output. In addition, it is shown that the FDTD method is able to distinguish clearly different types of twist disclination lines. The FDTD optical simulation method can be used for understanding fundamental relationships between optical response and complex NLC defect textures in new liquid-crystal applications including liquid-crystal-based biosensors and rheo-optical characterization of flowing liquid crystals.  相似文献   

9.
We describe the design, fabrication, and performance of a high-speed, continuously tunable, and reset-free polarization controller based on nematic liquid-crystal (NLC) microcell wave plates fabricated directly between the tips of optical fibers. This controller utilizes a pulsed driving scheme and optimized NLC materials to achieve a stepwise switching speed of 1 deg/micros, for arbitrary rotation angles with moderately low voltages. This compact microcell design requires no bulk optical components and has the potential to have low insertion loss. We describe the performance of these devices when implemented in polarization mode dispersion compensators for 40 Gbit/s systems. The good optical properties and the nonmechanical, high-speed, and low-power operation suggest that this type of device might be considered for some applications in dynamic compensation of polarization mode dispersion, polarization analysis, polarization division demultiplexing, and polarization scrambling in high-speed optical communication systems.  相似文献   

10.
We describe a technique for noncontact velocity measurement by using double-exposure speckle-pattern techniques with optical signal processing. The two speckle patterns are recorded on a ferroelectric liquid-crystal (FLC) spatial light modulator (SLM), which is a bistable optically addressed SLM, and the composite pattern is then analyzed by an optical system similar to a joint transform correlator, in which another FLC-SLM and a position-sensitive detector are used. We show that the performance of the system can be significantly improved by adjusting the time between exposures using a real-time feedback system that is based on the position of the correlation spot in the output plane.  相似文献   

11.
We fabricated polymer-dispersed liquid-crystal light valves (PDLCLV's) consisting of a 30-mum-thick hydrogenated amorphous-silicon film and a 10-mum-thick polymer-dispersed liquid-crystal (PDLC) film composed of nematic liquid-crystal (LC) microdroplets surrounded by polymer. The device can modulate high-power reading light, because the PDLC becomes transparent or opalescent independent of the polarization state of the reading light when either sufficient or no writing light is incident on the PDLCLV. This device has a limiting resolution of 50 lp/mm (lp indicates line pairs), a reading light efficiency of 60%, a ratio of intensity of light incident on the PDLC layer to intensity of light radiated from the layer, and an extinction ratio of 130:1. The optically addressed video projection system with three PDLCLV's, LC panels of 1048 x 480 pixels as input image sources, a 1-kW Xe lamp, and a schlieren optical system projected television (TV) pictures of 600 and 450 TV lines in the horizontal and the vertical directions on a screen with a diagonal length of 100 in. The total output flux of this system was 1500 lm.  相似文献   

12.
Simulation of light propagation within nematic liquid-crystal (LC) devices is considered, of which the director is aligned normal to the z axis. A three-dimensional full-vector finite-difference beam propagation method for an anisotropic medium is presented and an alternating direction implicit scheme is adopted. Simulations of light propagation in a bulk polarization converter, a waveguide with a LC covering layer, and an integrated polarization splitter and optical switch are presented. Comparison with an existing simulation method is carried out for beam behavior within the bulk polarization converter. The effect of strong surface anchoring of a LC cell on the beam behaviors within the integrated switch is also demonstrated.  相似文献   

13.
A dual in-plane electronic speckle pattern interferometry (ESPI) system has been developed for in situ measurements. The optical setup is described here. The system uses an electro-optical switch to change between the illumination directions for x and y sensitivity. The ability of the electro-optic device to change the polarization of the laser light forms the basis of this switch. The electro-optic device is a liquid-crystal layer cemented between two optically flat glass plates. An electric field can be set up across the layer by application of a voltage to electrodes. The speckle interferometry system incorporates two additional liquid-crystal devices to facilitate phase shifting, and the overall system is controlled by advanced software, which allows switching between the two perpendicular planes in quasi real time. The fact that there are no moving parts is an advantage in any ESPI system for which mechanical stability is vital.  相似文献   

14.
Vargas A  Campos J  Yzuel MJ  Iemmi C  Ledesma S 《Applied optics》1998,37(11):2063-2066
We present an architecture in which a multichannel correlator can perform simultaneous optical pattern recognition. Processing in parallel is made possible by use of the different diffraction orders produced by the pixelated structure of the liquid-crystal spatial light modulator employed to display the input scene. We codify additional quadratic phases in the filters to separate the correlation information corresponding to each channel. We demonstrate that the system can recognize different targets simultaneously. Good agreement between experimental and numerically simulated results is obtained.  相似文献   

15.
Honma M  Nose T 《Applied optics》2004,43(24):4667-4671
A novel depolarization method for linearly polarized incident light that uses a liquid-crystal (LC) cell with randomly aligned hybrid orientation domains is theoretically described by use of Mueller matrix calculations. The depolarization effect of the incident linear polarization is confirmed with Stokes parameter measurements. The unique optical properties of the fabricated LC depolarizer are revealed; that is, the intensity of the transmitted light is independent of the rotation of the analyzer. The degree of polarization becomes zero when the retardation of the LC depolarizer coincides with a half-wavelength.  相似文献   

16.
Liang J  Wu SY  Fatemi FK  Becker MF 《Applied optics》2012,51(16):3294-3304
Phase compression is used to suppress the on-axis zero-order diffracted (ZOD) beam from a pixelated phase-only spatial light modulator (SLM) by a simple modification to the computer generated hologram (CGH) loaded onto the SLM. After CGH design, the phase of each SLM element is identically compressed by multiplying by a constant scale factor and rotated on the complex unit-circle to produce a cancellation beam that destructively interferes with the ZOD beam. Experiments achieved a factor of 3 reduction of the ZOD beam using two different liquid-crystal SLMs. Numerical simulation analyzed the reconstructed image quality and diffraction efficiency versus degree of phase compression and showed that phase compression resulted in little image degradation or power loss.  相似文献   

17.
Grother P  Casasent D 《Applied optics》2001,40(29):5253-5259
The modulation transfer function (MTF), when used with amplitude modulation (m(A)) data, is a vital coherent optical performance measure for a spatial light modulator (SLM). A new image plane amplitude MTF (MTF(A)) measurement method is presented for electrically addressed SLMs. It involves digital analysis of the output image of a square-wave pattern written onto the SLM. Modulation-level effects are also addressed. Optical laboratory results are presented for two liquid-crystal SLMs. The need to consider amplitude rather than intensity modulation (when coherent optical processing applications are considered) is noted in terms of SLM biasing.  相似文献   

18.
A complete methodology using matrix representations for describing light transmission and reflection at an interface between an isotropic medium with high refractive index and a uniaxial birefringent material where total internal reflection (TIR) could happen is described systematically. A new TIR-based liquid-crystal (LC) switch system is proposed and investigated in detail by using this analyzing method. The criteria of selection of critical parameters such as LC mixture, waveguide, and operation mode of the LC layer, etc., are discussed. Dependence of transmission on incident angle and dynamic characteristics under an electric field are given for different cell gaps. The results give detailed and useful guidance in the fabrication of the LC switch system.  相似文献   

19.
The dynamics of a nonstationary pseudo-hexagonal domain structure that appears during the electroconvection in nematic liquid crystals (NLCs) in a constant electric field has been studied using the optical diffraction techniques and the temporal Fourier analysis of the intensity of light transmitted through an NLC cell. The system evolution from an unperturbed state to a regime of developed domain oscillations is traced. It is established that, above the electrohydrodynamic instability threshold, the spatiotemporal synchronization of domain oscillations in a planar NLC layer takes place in the entire sample, which is manifested by the formation of a superlattice with the nodes at the sources of phase waves.  相似文献   

20.
A novel, to our knowledge, liquid-crystal panel suitable for real-time holographic purposes has been prepared. A nematic liquid-crystal layer sandwiched between photoconducting polymeric layers, when exposed to a sinusoidal light-intensity pattern, shows efficient formation of refractive-index gratings. The unique feature of the presented panel is its ability to switch energy from beam to beam in a manner similar to the charge-diffusion-controlled photorefractive effect. In a two-wave-mixing experiment multiple orders of diffraction are present, and a very high two-beam coupling-gain ratio (2.5) and a net exponential gain coefficient of ? = 931 cm(-1) have been measured. This gain was achieved in samples biased by a dc external electric field and tilted with respect to the beam-incidence bisector at 45 degrees . The time constants for grating formation and erasure in the studied system are functions of the applied voltage and can be made as short as a few milliseconds under favorable conditions. The mechanism of beam coupling is linked with an electric-field-driven reorientation of the nematic director as a result of a spatially modulated space-charge field created by light in a photoconducting poly(3-octyl)thiophene polymeric layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号