首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In machine learning and data mining, feature selection (FS) is a traditional and complicated optimization problem. Since the run time increases exponentially, FS is treated as an NP-hard problem. The researcher’s effort to build a new FS solution was inspired by the ongoing need for an efficient FS framework and the success rates of swarming outcomes in different optimization scenarios. This paper presents two binary variants of a Hunger Games Search Optimization (HGSO) algorithm based on V- and S-shaped transfer functions within a wrapper FS model for choosing the best features from a large dataset. The proposed technique transforms the continuous HGSO into a binary variant using V- and S-shaped transfer functions (BHGSO-V and BHGSO-S). To validate the accuracy, 16 famous UCI datasets are considered and compared with different state-of-the-art metaheuristic binary algorithms. The findings demonstrate that BHGSO-V achieves better performance in terms of the selected number of features, classification accuracy, run time, and fitness values than other state-of-the-art algorithms. The results demonstrate that the BHGSO-V algorithm can reduce dimensionality and choose the most helpful features for classification problems. The proposed BHGSO-V achieves 95% average classification accuracy for most of the datasets, and run time is less than 5 sec. for low and medium dimensional datasets and less than 10 sec for high dimensional datasets.  相似文献   

2.
A large absolute higher-order stop-band is achieved in two-dimensional (2D) photonic crystals of square lattice. A genetic algorithm is used to search through a large number of possible structures. In this algorithm, the unit cell is divided into a grid of square pixels and a 2D binary chromosome is assigned to each filling pattern of the pixels. An initial structure with a small higher-order stop-band is included in the initial population to accelerate the search procedure. This initial structure is formed by breaking the symmetry of the supercell of a photonic crystal having a square lattice of square dielectric rods in air. In the optimization process, the effect of reducing the symmetry of the unit cell on the photonic band-gap is investigated. A structure showing an absolute higher-order band-gap as large as 0.1522(2πc/a) is obtained, which is larger than the values reported so far for photonic stop-bands.  相似文献   

3.
A generic constraint handling framework for use with any swarm-based optimization algorithm is presented. For swarm optimizers to solve constrained optimization problems effectively modifications have to be made to the optimizers to handle the constraints, however, these constraint handling frameworks are often not universally applicable to all swarm algorithms. A constraint handling framework is therefore presented in this paper that is compatible with any swarm optimizer, such that a user can wrap it around a chosen swarm algorithm and perform constrained optimization. The method, called separation-sub-swarm, works by dividing the population based on the feasibility of individual agents. This allows all feasible agents to move by existing swarm optimizer algorithms, hence promoting good performance and convergence characteristics of individual swarm algorithms. The framework is tested on a suite of analytical test function and a number of engineering benchmark problems, and compared to other generic constraint handling frameworks using four different swarm optimizers; particle swarm, gravitational search, a hybrid algorithm and differential evolution. It is shown that the new framework produces superior results compared to the established frameworks for all four swarm algorithms tested. Finally, the framework is applied to an aerodynamic shape optimization design problem where a shock-free solution is obtained.  相似文献   

4.
S Mandal 《Sadhana》2018,43(1):2
The rising complexity of real-life optimization problems has constantly inspired computer researchers to develop new efficient optimization methods. Evolutionary computation and metaheuristics based on swarm intelligence are very popular nature-inspired optimization techniques. In this paper, the author has proposed a novel elephant swarm water search algorithm (ESWSA) inspired by the behaviour of social elephants, to solve different optimization problems. This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought. Initially, we perform preliminary parametric sensitivity analysis for our proposed algorithm, developing guidelines for choosing the parameter values in real-life problems. In addition, the algorithm is evaluated against a number of widely used benchmark functions for global optimizations, and it is observed that the proposed algorithm has better performance for most of the cases compared with other state-of-the-art metaheuristics. Moreover, ESWSA performs better during fitness test, convergence test, computational complexity test, success rate test and scalability test for most of the benchmarks. Next, ESWSA is tested against two well-known constrained optimization problems, where ESWSA is found to be very efficient in term of execution speed and best fitness. As an application of ESWSA to real-life problem, it has been tested against a benchmark problem of computational biology, i.e., inference of Gene Regulatory Network based on Recurrent Neural Network. It has been observed that the proposed ESWSA is able to reach nearest to global minima and enabled inference of all true regulations of GRN correctly with less computational time compared with the other existing metaheuristics.  相似文献   

5.
涡街流量计在工业现场工作时,输出信号易叠加噪声,尤其在小流量测量时,涡街信号易被现场噪声淹没,导致测量受限。针对涡街信号处理,提出一种基于遗传算法的双调制随机共振方法。该方法对输入信号进行频率和幅值双调制后进入非线性双稳系统,以系统输出信号的信噪比为适应度函数,通过二进制编码,将调制频率和幅值组合成一个二进制字符串,同时对两个参数进行并行寻优,得到最优解,使系统产生随机共振,增强涡街信号。搭建涡街流量计实验装置,实验结果表明,使用遗传算法可以有效搜索出调制频率和幅值最优解,搜索效率高,解决现有多参数寻优的困难,适用于涡街信号特别是小流量信号处理,能准确获取涡街频率,实现流量测量。  相似文献   

6.
An effective accelerated pseudo-genetic algorithm (APGA), which combines an adaptive pseudo-genetic algorithm (P-GA) with an accelerated random search (ARS) method, is proposed to update finite element (FE) models in the presence of measured data. The algorithm explores the higher probability of converging to a global solution provided by genetic algorithms and the accelerated hill-climbing ability given by ARS. The objective of the optimization problem is to minimize the difference between measured and numerical FE vibration data. The effectiveness of the approach is first tested on mathematical benchmark functions. The best version of APGA is then applied to a simulated beam structure to test the applicability of the new approach for FE model updating. Finally, the algorithm is applied to update two real structures using measured modal data. The application of this new algorithm obtains results that correlate well with experiments in reduced time.  相似文献   

7.
Recent years witness a great deal of interest in artificial intelligence (AI) tools in the area of optimization. AI has developed a large number of tools to solve the most difficult search-and-optimization problems in computer science and operations research. Indeed, metaheuristic-based algorithms are a sub-field of AI. This study presents the use of the metaheuristic algorithm, that is, water cycle algorithm (WCA), in the transportation problem. A stochastic transportation problem is considered in which the parameters supply and demand are considered as random variables that follow the Weibull distribution. Since the parameters are stochastic, the corresponding constraints are probabilistic. They are converted into deterministic constraints using the stochastic programming approach. In this study, we propose evolutionary algorithms to handle the difficulties of the complex high-dimensional optimization problems. WCA is influenced by the water cycle process of how streams and rivers flow toward the sea (optimal solution). WCA is applied to the stochastic transportation problem, and obtained results are compared with that of the new metaheuristic optimization algorithm, namely the neural network algorithm which is inspired by the biological nervous system. It is concluded that WCA presents better results when compared with the neural network algorithm.  相似文献   

8.
The flutter/divergence speed of a simple rectangular composite wing is maximized through the use of different ply orientations. Four different biologically inspired optimization algorithms (binary genetic algorithm, continuous genetic algorithm, particle swarm optimization, and ant colony optimization) and a simple meta-modeling approach are employed statistically on the same problem set. In terms of the best flutter speed, it was found that similar results were obtained using all of the methods, although the continuous methods gave better answers than the discrete methods. When the results were considered in terms of the statistical variation between different solutions, ant colony optimization gave estimates with much less scatter.  相似文献   

9.
S. F. Hwang  R. S. He 《工程优选》2013,45(7):833-852
A hybrid optimization algorithm which combines the respective merits of the genetic algorithm and the simulated annealing algorithm is proposed. The proposed algorithm incorporates adaptive mechanisms designed to adjust the probabilities of the cross-over and mutation operators such that its hill-climbing ability towards the optimum solution is improved. The algorithm is used to optimize the weight of four planar or space truss structures and the results are compared with those obtained using other well-known optimization schemes. The evaluation trials investigate the performance of the algorithm in optimizing over discrete sizing variables only and over both discrete sizing variables and continuous configuration variables. The results show that the proposed algorithm consistently outperforms the other optimization methods in terms of its weight-saving capabilities. It is also shown that the global searching ability and convergence speed of the proposed algorithm are significantly improved by the inclusion of adaptive mechanisms to adjust the values of the genetic operators. Hence the hybrid algorithm provides an efficient and robust technique for solving engineering design optimization problems.  相似文献   

10.
Non-linear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Centre, a project was initiated to assess the performance of eight different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using the eight different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems, however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with Sequential Unconstrained Minimizations Technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.  相似文献   

11.
This article proposes a method called the cooperative coevolutionary genetic algorithm with independent ground structures (CCGA-IGS) for the simultaneous topology and sizing optimization of discrete structures. An IGS strategy is proposed to enhance the flexibility of the optimization by offering two separate design spaces and to improve the efficiency of the algorithm by reducing the search space. The CCGA is introduced to divide a complex problem into two smaller subspaces: the topological and sizing variables are assigned into two subpopulations which evolve in isolation but collaborate in fitness evaluations. Five different methods were implemented on 2D and 3D numeric examples to test the performance of the algorithms. The results demonstrate that the performance of the algorithms is improved in terms of accuracy and convergence speed with the IGS strategy, and the CCGA converges faster than the traditional GA without loss of accuracy.  相似文献   

12.
A unique hybrid-optimization technique is proposed, based on genetic algorithms (GA) and gradient descent (GD) methods, for the smart design of photonic crystal (PhC) emitters. The photonic simulation is described and the granularity of photonic crystal dimensions is considered. An innovative sliding-window method for performing local heuristic search is demonstrated. Finally, the application of the proposed method on two case studies for the design of a multi-pixel photonic crystal emitter and the design of thermal emitter in thermal photovoltaic is demonstrated. Discussion in the report includes the ability of the optimal PhC structures designed using the proposed method, to produce unprecedented high emission efficiencies of 54.5% in a significantly long wavelength region and 84.9% at significantly short wavelength region.  相似文献   

13.
This article presents an approach to enhance the Hooke-Jeeves optimization algorithm through the use of fuzzy logic. The Hooke-Jeeves algorithm, similar to many other optimization algorithms, uses predetermined fixed parameters. These parameters do not depend on the objective function values in the current search region. In the proposed algorithm, several fuzzy logic controllers are integrated at the various stages of the algorithm to create a new optimization algorithm: Fuzzy-Controlled Hooke-Jeeves algorithm. The results of this work show that incorporating fuzzy logic in the Hooke-Jeeves algorithm can improve the ability of the algorithm to reach an extremum in different typical optimization test cases and design problems. Sensitivity analysis of the variables of the algorithm is also considered.  相似文献   

14.
Evolutionary algorithms cannot effectively handle computationally expensive problems because of the unaffordable computational cost brought by a large number of fitness evaluations. Therefore, surrogates are widely used to assist evolutionary algorithms in solving these problems. This article proposes an improved surrogate-assisted particle swarm optimization (ISAPSO) algorithm, in which a hybrid particle swarm optimization (PSO) is combined with global and local surrogates. The global surrogate is not only used to predict fitness values for reducing computational burden but also regarded as a global searcher to speed up the global search process of PSO by using an efficient global optimization algorithm, while the local one is constructed for a local search in the neighbourhood of the current optimal solution by finding the predicted optimal solution of the local surrogate. Empirical studies on 10 widely used benchmark problems and a real-world structural design optimization problem of a driving axle show that the ISAPSO algorithm is effective and highly competitive.  相似文献   

15.
This study explores the use of teaching-learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms for determining the optimum operating conditions of combined Brayton and inverse Brayton cycles. Maximization of thermal efficiency and specific work of the system are considered as the objective functions and are treated simultaneously for multi-objective optimization. Upper cycle pressure ratio and bottom cycle expansion pressure of the system are considered as design variables for the multi-objective optimization. An application example is presented to demonstrate the effectiveness and accuracy of the proposed algorithms. The results of optimization using the proposed algorithms are validated by comparing with those obtained by using the genetic algorithm (GA) and particle swarm optimization (PSO) on the same example. Improvement in the results is obtained by the proposed algorithms. The results of effect of variation of the algorithm parameters on the convergence and fitness values of the objective functions are reported.  相似文献   

16.
In this article, a hybrid global–local optimization algorithm is proposed to solve continuous engineering optimization problems. In the proposed algorithm, the harmony search (HS) algorithm is used as a global-search method and hybridized with a spreadsheet ‘Solver’ to improve the results of the HS algorithm. With this purpose, the hybrid HS–Solver algorithm has been proposed. In order to test the performance of the proposed hybrid HS–Solver algorithm, several unconstrained, constrained, and structural-engineering optimization problems have been solved and their results are compared with other deterministic and stochastic solution methods. Also, an empirical study has been carried out to test the performance of the proposed hybrid HS–Solver algorithm for different sets of HS solution parameters. Identified results showed that the hybrid HS–Solver algorithm requires fewer iterations and gives more effective results than other deterministic and stochastic solution algorithms.  相似文献   

17.
Ali Sadollah  Do Guen Yoo 《工程优选》2013,45(12):1602-1618
The design of water distribution systems is a large class of combinatorial, nonlinear optimization problems with complex constraints such as conservation of mass and energy equations. Since feasible solutions are often extremely complex, traditional optimization techniques are insufficient. Recently, metaheuristic algorithms have been applied to this class of problems because they are highly efficient. In this article, a recently developed optimizer called the mine blast algorithm (MBA) is considered. The MBA is improved and coupled with the hydraulic simulator EPANET to find the optimal cost design for water distribution systems. The performance of the improved mine blast algorithm (IMBA) is demonstrated using the well-known Hanoi, New York tunnels and Balerma benchmark networks. Optimization results obtained using IMBA are compared to those using MBA and other optimizers in terms of their minimum construction costs and convergence rates. For the complex Balerma network, IMBA offers the cheapest network design compared to other optimization algorithms.  相似文献   

18.
Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a mesh adaptive direct search (MADS) algorithm is incorporated into the local phase. Numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.  相似文献   

19.
This paper is concerned with augmenting genetic algorithms (GAs) to include memory for continuous variables, and applying this to stacking sequence design of laminated sandwich composite panels that involves both discrete variables and a continuous design variable. The term “memory” implies preserving data from previously analyzed designs. A balanced binary tree with nodes corresponding to discrete designs renders efficient access to the memory. For those discrete designs that occur frequently, an evolving database of continuous variable values is used to construct a spline approximation to the fitness as a function of the single continuous variable. The approximation is then used to decide when to retrieve the fitness function value from the spline and when to do an exact analysis to add a new data point for the spline. With the spline approximation in place, it is also possible to use the best solution of the approximation as a local improvement during the optimization process. The demonstration problem chosen is the stacking sequence optimization of a sandwich plate with composite face sheets for weight minimization subject to strength and buckling constraints. Comparisons are made between the cases with and without the binary tree and spline interpolation added to a standard GA. Reduced computational cost and increased performance index of a GA with these changes are demonstrated.  相似文献   

20.
Zhou G  Chen Y  Wang Z  Song H 《Applied optics》1999,38(20):4281-4290
We propose a genetic local search algorithm (GLSA) for the optimization design of diffractive optical elements (DOE's). This hybrid algorithm incorporates advantages of both genetic algorithm (GA) and local search techniques. It appears better able to locate the global minimum compared with a canonical GA. Sample cases investigated here include the optimization design of binary-phase Dammann gratings, continuous surface-relief grating array generators, and a uniform top-hat focal plane intensity profile generator. Two GLSA's whose incorporated local search techniques are the hill-climbing method and the simulated annealing algorithm are investigated. Numerical experimental results demonstrate that the proposed algorithm is highly efficient and robust. DOE's that have high diffraction efficiency and excellent uniformity can be achieved by use of the algorithm we propose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号