首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Francesco Delogu   《Intermetallics》2007,15(12):1568-1572
Molecular dynamics simulations have been used to study shear-induced chemical disordering in Ni3Al lattices at different temperatures and strain rates. Shearing determines the formation of an amorphous layer, the thickness of which increases linearly with the square root of time. The rate at which the amorphous layer grows is both shearing rate- and temperature-dependent. A linear correlation between the amorphous layer growth rate and the shear modulus is found. This suggests that mechanical properties could play a central role in shear-induced disordering processes.  相似文献   

2.
The sulfidation/oxidation and carburization resistances of a Ni3Al(Mo) (IC-6) alloy at high temperatures were investigated in this work. The corrosion kinetics of the IC-6 alloy was found to follow parabolic rate law in an environment of high partial pressures of sulfur (10−5 atm) and low partial pressures of oxygen (<10−20 atm) at 700 °C. Because the Ni sulfides are readily formed at the testing temperature, the sulfidation/oxidation resistance of the IC-6 alloy is similar to that of commercial Ni–Cr alloys in the current environments, although IC-6 is alloyed with Al. Compared with the HP heat resistant steel which is commonly used in the petrochemical industry, the IC-6 alloy possesses significantly improved resistance to carburization at 1100 °C. The mechanisms governing the corrosion attack in the environments used in this investigation were also discussed.  相似文献   

3.
Zhenyu Liu  Wei Gao 《Intermetallics》2000,8(12):1385-1391
Specimens of cast and micro-grained γ′-Ni3Al, which were produced with vacuum casting and unbalanced magnetron sputter deposition, respectively, were isothermally oxidised in air at 1473 K for different periods of time. The formation of interfacial voids at the alloy/oxide interface was observed with SEM, which indicated that there were more interfacial voids formed in the cast Ni3Al than in the micro-grained alloy under the same oxidation conditions. A phenomenological equation describing the fraction of the void projected areas was established, in which the impingement and coalescence between voids during their growth was taken into consideration. It was elucidated that low vacancy density in the micro-grained Ni3Al due to the high creep, re-crystallisation and the enhanced Al diffusion reduced the void percentage. Also, it was confirmed that aluminium evaporation, perhaps supplemented by surface diffusion, supplied most Al to the oxide scales formed above the interfacial voids.  相似文献   

4.
Grain boundary (gb) self-diffusion in pure Ni-rich Ni3Al was measured between 882 and 1374 K using the radiotracer 63Ni, a serial sectioning technique and sensitive liquid scintillation counting. The results of the gb diffusivity P = δDgb (δ : gb width, Dgb : gb diffusion coefficient) can be represented by the Arrhenius parameters P0 = 3.27 · 1013and Qgb = 168 kJ/mol. Additionally gb diffusion was investigated in boron-doped (0.24 at%) Ni-rich Ni3Al in the range from 882 to 1352 K yielding P0 = 1.24 · 10−12 m3/s and Qgb = 187 kJ/mol. The increase in the activation enthalpy Qgb and the decrease of P upon boron-doping is explained by the segregation of B in Ni3Al gbs, which may lead to an increase in the vacancy formation enthalpy and to a blocking of energetically favourable diffusion paths in the gbs. For comparison gb self-diffusion in pure Ni was remeasured yielding Qgb = 112 kJ/mol. Ordering of the lattice and the preservation of ordering up to the gb planes, as predicted in Ni3Al, therefore has a pronounced decelerating influence on gb diffusion, stronger than on bulk diffusion. Applying the semi-empirical relation of Borisov et al. (Phys. Met. Metallogr., 17 (1964) 80) gb energies γgb were determined for arbitrary high angle gbs in pure and B-doped Ni3Al, resulting in 915 and 870 mJ/m2, respectively, at 1100 K.  相似文献   

5.
Yield stress in compression (0.2% flow stress) from ambient temperature up to 800 °C has been studied on Ni3(Al, Si) alloy with the atomic composition Ni78Al11Si11. When annealed at 1000 °C, the alloy has a pure L12 (γ′) ordered structure. After subsequent annealing at 750 °C, the disordered solid solution of Al and Si in Ni (face centred cubic, γ) precipitates in fine coherent particles. Calorimetry helps to describe the various phase transformations necessary to obtain the last microstucture. Solute addition of Si, which replaces Al atoms, increases the 0.2% flow stress of Ni3Al in the fully γ′ microstructure. The γ precipitation shifts the peak stress towards higher temperatures and stresses.  相似文献   

6.
The peritectoid formation of Ni5Al3 from the two phases NiAl and Ni3Al was studied in a Ni---Al alloy containing 66 at% Ni by means of transmission electron microscopy. The product phase does not form as a uniform layer between the two initial phases as expected and already observed in a few systems. In the system studied here there are only very few nucleation sites located at the NiAl/Ni3Al interface. The further growth of Ni5Al3 takes place only into one of the initial phases which is NiAl. A strict orientation relationship between NiAl and Ni5Al3 was observed; the growth direction was [221]. The transformation is presumably diffusion controlled; it is very sluggish and it can be described by a nucleation and growth process. From the study presented here we conclude that the formation of Ni5Al3 proceeds by a micromechanism which differs from that normally assumed for peritectoid reactions.  相似文献   

7.
The microstructure of laser beam weld-metal of an yttrium doped directionally solidified alloy IC 6A, with chemical composition Ni–16Al–8.5Mo–0.12B–0.05C–0.03Y (at.%) was studied. The dendritic microsegregation observed within the fusion zone indicated that dendrite cores were slightly depleted in molybdenum and aluminum and the interdendritic regions were also considerably enriched in yttrium. Severe cracking in the weld-metal was observed and was found to be closely associated with interdendritic eutectic-type microconstituents identified as consisting of γ, γ′ and Ni–Mo phases. An yttrium-rich phase (Ni3Y) was observed in some interdendritic regions containing the eutectic γ, γ′ and Ni–Mo products. Their formation was discussed in relation to plausible microsegregation induced alteration of primary solidification path during cooling from welding temperatures.  相似文献   

8.
Incremental creep tests have been used to explore the time-dependent plastic behavior of single-slip oriented Ni3(Al, Ta) at low temperatures in the anomalous flow regime. For selected incremental creep experiments at 20 and 100 °C, it was discovered that Ni3Al exhibited sigmoidal creep, where there is a significant time delay before the plastic strain rate accelerates to a maximum value during a creep experiment. Several of the factors that affect the sigmoidal creep response have been identified. The origin of sigmoidal creep is accounted for using a simple model of work hardening in Ni3Al, where the acceleration of the creep rate is a direct result of the annihilation of the existing dislocation substructure.  相似文献   

9.
Iron aluminides are ordered intermetallic alloys which offer good resistance to corrosion and sulfidation. At the same time, their Achilles' heel is low ductility at room temperature and sometimes they have poor mechanical properties. By means of mechanical alloying and spark plasma sintering (MA–SPS) it is possible to obtain bulk nanostructured iron aluminides which show high hardness and high yield stress.

In this work we present the production of nanostructured powders and their consolidation through spark plasma sintering. The inevitable use of methanol as processing control agent (PCA) leads to a supersaturation in carbon and oxygen of the milled powder and a consequent in-situ precipitation of carbides and oxides during SPS. The presence of carbides, oxides and a nanostructured matrix leads to high mechanical properties with hardness 5.20 ± 0.05 GPa and a yield stress of 1305 MPa.  相似文献   


10.
J. Lapin 《Intermetallics》1997,5(8):615-624
The effect of ageing in the temperature range from 1023 to 1373 K on the micro-structure and mechanical behaviour of a directionally solidified (DS) Ni3Al-based alloy modified with additions of chromium and iron was investigated. The microstructure of the as-grown alloy consisted of well-aligned and equally spaced lamellas composed of β(B2) intermetallic compound NiAl (Cr, Fe), some β′(L10) martensite and spherical -Cr precipitates. The matrix consisted of γ′(L12) intermetallic compound Ni3Al (Cr, Fe), γ-phase (Ni-based solid solution) and lath-shaped -Cr precipitates. Ageing at 1123 and at 1173 K was found to be the most effective in transforming the unstable lamellae to γ′-phase and -Cr precipitates. The change of microstructural characteristics such as volume fraction of lamellae, size, morphology and distribution of γ′-phase, γ-phase and -Cr precipitates significantly influenced the room-temperature yield strength and elongation of DS alloy after ageing. The strain-hardening exponent varied with the ageing temperature between 0.30 and 0.46 and the quasi-steady work-hardening rate between 2710 and 5340 MPa. In the specimens with the lowest amount of disordered regions, the strain-hardening exponent was found to be 0.46 and the quasisteady work hardening rate was determined to be 3340 MPa.  相似文献   

11.
The microstructure evolution and room temperature mechanical property of beta containing Ti–44Al–3Nb–1Mo–1V–0.2Y alloy consolidated by spark plasma sintering was studied. Pre-alloyed powders were sintered for 2 min in the range 900–1250 °C under 100 MPa. It was found that duplex and lamellar microstructures were obtained depending on the SPS temperature. The duplex microstructure formed at 1150 °C and 1175 °C, and the lamellar structure was achieved above 1200 °C. However, coarsening of lamellar colonies occurred with further increasing of the sintering temperature. The specimen with fine lamellar colonies exhibited a relatively high compressive strength, whereas the one with duplex microstructure showed a superior final strain.  相似文献   

12.
X. Peng  M. Li  F. Wang 《Corrosion Science》2011,(4):1616-1620
An ultrafine-grained (UFG) Ni3Al was fabricated by annealing an electrodeposited Ni–Al composite in vacuum at 600 °C for 2 h. The UFG Ni3Al, compared to a compositional-similar but coarse-grained (CG) alloy prepared by arc-melting, exhibited a greatly increased cyclic oxidation resistance at 900 °C. Microstructural investigation showed that the CG alloy grew a scale with a high susceptibility to buckling and cracking because of the formation of large voids at the scale/metal interface, but that the UFG alloy grew an adherent scale, because its typical structure prevented the formation of the interface void during oxidation.  相似文献   

13.
Tracer diffusion of 44Ti was measured between 1373 and 1126 K in four alloys in the composition range from 25 to 35 at% Al in ordered Ti3Al using the standard precision grinding sectioning technique and polycrystalline samples. The self-diffusion coefficient D*Ti was found to be lower than self-diffusion in pure -Ti and to increase very little with Al concentration. D*Ti reveals Arrhenius behaviour which is described by the frequency factor D0 = (2.44 −1.04+1.81) · 10−5 m2/s and the activation enthalpy QTi = (288.2 ± 5.7) kJ/mol. Especially, the stoichiometric composition shows no distinguished diffusion behaviour.

Interdiffusion was measured in single phase conditions by combining samples of 25 and 35 at% Al. The interdiffusion coefficient was evaluated by Boltzmann-Matano analysis between 26 and 34 at% Al at different temperatures. Again, only a weak concentration dependence of and an Arrhenius behaviour were detected. Applying Darken's equation, the self-diffusion coefficient of aluminium D*Ti was calculated by combining with the thermodynamic factor Φ(XAl, T) in Ti3Al. D*Al turned out to be smaller than D*Ti, e.g. by a factor of 6 at 1170 K. The Arrhenius relation is characterized by D0 = (2.32 −1.20+2.48) · 10−1 m2/s and QAl = (394.5 ± 7.5) kJ/mol. Different jump possibilities of the Al atoms are discussed. From the overall diffusion behaviour in the Ti3Al-phase it is concluded that atomic migration proceeds via thermal vacancies. There is no indication regarding the formation of constitutional vacancies. Diffusion behaviour of the components Al and Ti in Ti3Al is compared with our recent results of Al impurity diffusion (SIMS analysis) and self-diffusion in pure -Ti.  相似文献   


14.
An elemental powder mixture corresponding to Al3Ni2 phase stoichiometry was subjected to mechanical alloying. A metastable nanocrystalline AlNi intermetallic phase with the mean crystallite size of 12 nm was formed upon milling. Heating of the synthesised powder in a calorimeter up to 720 °C caused phase transformation into an equilibrium Al3Ni2 intermetallic phase with the mean crystallite size of 41 nm. The product of mechanical alloying was consolidated at 1000 °C under the pressure of 5 GPa and 7.7 GPa. During consolidation, a phase transformation analogous with the one observed in the course of heating in the calorimeter took place. Both bulk materials have nanocrystalline structure with mean crystallite size of 67 nm and 58 nm, the smaller one in the sample consolidated under the higher pressure. The hardness of the produced Al3Ni2 intermetallic is 8.81 GPa (898 HV1) and 8.72 GPa (887 HV1), while the specific yield strength, estimated using the Tabor relation, is 624 kNm/kg and 617 kNm/kg for the sample hot-pressed under 5 GPa and 7.7 GPa respectively. On the basis of the obtained results, we can assume that the quality of consolidation with preserving a nanocrystalline structure is satisfactory and the hardness as well as the estimated specific yield strength of the produced materials are relatively high.  相似文献   

15.
The anomalous stress peak observed near 500–600 °C in Fe–Al alloys has now been convincingly explained using a model of hardening by immobile thermal vacancies on the lower temperature side of the peak and the loss of hardening as these vacancies become mobile at higher temperatures. The large numbers of vacancies required for such hardening are associated with compositions close to stoichiometry, i.e. 40–50%Al, raising the question of whether such a vacancy hardening model can be adopted for Fe3Al alloys, which show a similar stress peak anomaly. Examination of data on vacancy formation over the entire range of composition, Fe–Fe3Al–FeAl, shows that, indeed, a vacancy hardening model appears capable of explaining the stress anomaly for both FeAl and Fe3Al.  相似文献   

16.
An equiatomic CoCrFeNiMn high-entropy alloy was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). During MA, a solid solution with refined microstructure of 10 nm which consists of a FCC phase and a BCC phase was formed. After SPS consolidation, only one FCC phase can be detected in the HEA bulks. The as-sintered bulks exhibit high compressive strength of 1987 MPa. An interesting magnetic transition associated with the structure coarsening and phase transformation was observed during SPS process.  相似文献   

17.
The oxidation behavior of an oxide-dispersion strengthened (ODS) NiAl has been studied between 900 and 1100°C in air. The dispersoids of mostly Al2O3 in fine-grained β-NiAl were incorporated by mechanical alloying (MA) in an argon atmosphere and hot pressing. It was found that excessive amounts of dispersoids and voids within the matrix had serious negative effects on the oxidation resistance of β-NiAl, by allowing for a more rapid formation of oxide scales and by providing fast diffusion paths for oxygen. Below the thin surface oxide scales consisted of -Al2O3, NiAl2O4 and Ni2O3, an internal oxidation zone was formed deep into the matrix. No metastable transient aluminas were formed during oxidation. The oxide ridge structure began to evolve after oxidation at 1100°C at the oxide–gas interface.  相似文献   

18.
Gas-atomized Ti–45Al–7Nb–0.3W alloy powders were consolidated by the spark plasma sintering (SPS) process. The densification course and the microstructural evolution of the as-atomized powders during SPS were systematically investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) techniques. As a result of SPS densification, special (α + γ) precipitation zones are formed in the initial stage of sintering, and the residual β phases in the microstructure of the powders are fragmentated. During the following SPS course, α2/γ lamellar colonies at the edge of the precipitation zone, α2 and B2 phase as well as dynamic recrystallized γ grains are found to form. For the as-atomized powders sintered at 1000 °C, the densification is preceded by the early rearrangement of the powder particles and the following formation of sintering necks. For the powders sintered at 1200 °C, plastic deformation plays an important role in densification. Local melting and surface bulging between two adjacent particles can also serve as one of the densification mechanisms. In the later stage of sintering, the growth of sintering necks controlled by diffusion and the pore closure would make important contributions to the densification.  相似文献   

19.
A Fe–26Al–5Cr (at.%) single-phase (:A2/B2/D03) alloy and two-phase (+TiC) alloys with different amounts of TiC particles have been hot rolled at 800 °C and the kinetics of static recrystallisation have been studied. In the alloys with a high amount of TiC, needle-like TiC of more than 1 μm in length formed during cooling after homogenisation in the single-phase region and coarsened during hot rolling. The large particles cause particle stimulated nucleation (PSN) and hence accelerate recrystallisation. In order to accomplish both strengthening by precipitates and inhibition of recrystallisation that deteriorates room-temperature ductility, a thermo-mechanical treatment consisting of hot deformation with a low amount of precipitates and a subsequent heat treatment for further precipitation is proposed. This process is difficult to carry out in the (Fe–26Al–5Cr)–TiC system due to the high precipitation temperature of TiC. The precipitation temperature is significantly decreased by replacing TiC by VC or MoC.  相似文献   

20.
A melting procedure for air induction melting (AIM) of an Fe3Al based intermetallic alloy Fe-15.38 wt%Al-1.1 wt%C is described. Use of an appropriate slag cover during AIM results in elimination of hydrogen gas porosity in cast AIM ingots. Criteria for slag selection and slag to metal ratio are discussed. Refining by slag-metal reactions results in significant reduction in impurity levels (S, O, N) during AIM. Consequently, low cost raw materials such as mild steel scrap and commercial aluminium were used for melting the alloy. The AIM ingot exhibited excellent tensile properties. The ductility and hot workability of the ingot may be further improved by subsequent processing through electroslag remelting. It is also argued that the presence of carbon may be necessary to get AIM castings with desirable mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号