首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了更好地回收矿石中的铁资源,安徽周油坊铁矿厂引入螺旋溜槽重选设备,对弱磁-重选-强磁-反浮选、重选-弱磁-强磁-反浮选、弱磁-强磁-重选-反浮选三种重选流程进行实践和优化,并分别对螺旋溜槽应用效果进行了全面的考察和对比,最终确定采用弱磁-强磁-重选-反浮选流程,使精矿产率超过15%,精矿品位达65%,有效地回收了矿石中铁资源,实现了"能收早收"的选矿原则,同时也大大节约了生产成本。  相似文献   

2.
采用重选及弱磁—强磁工艺对巴西某镜铁矿进行了选矿工艺对比试验研究。结果表明,原矿磨至-0.074mm占50%,在弱选磁场强为1200Oe、强磁选场强为12000Oe的条件下,通过弱磁—强磁工艺可获得铁精矿品位67.58%、回收率96.21%的良好技术指标。用摇床重选也可获得较高品位的精矿,但与弱磁—强磁流程相比,精矿回收率较低。  相似文献   

3.
西北某难选铁矿石中主要铁矿物为磁铁矿和镜铁矿,其中磁铁矿与镜铁矿、镜铁矿与石英嵌布关系密切。对该矿石进行了磨选工艺技术条件研究,结果表明,采用磨矿-1粗1精弱磁选-强磁粗选-强磁粗精矿再磨-强磁精选流程处理,可以获得铁品位为66.39%、回收率为40.94%的弱磁精矿和铁品位为63.41%、回收率为37.27%的强磁精矿,综合精矿铁品位为64.95%、回收率为78.21%。  相似文献   

4.
根据内蒙古某铁矿性质,对采用BKY型预选磁选机进行磨前湿式磁预选、预选粗精矿细磨后再选以及BL1500螺旋溜槽重选磁预选尾矿等方面的可行性进行研究,取得铁精矿综合品位62.46%、总产率30%、总回收率43%的指标。表明使用BKY磁选机与BL1500螺旋溜槽组成的磁选—重选联合流程选别该类型铁矿石是可行的。  相似文献   

5.
安徽某赤铁矿选厂生产现场选矿工艺中螺旋溜槽重选流程给矿粒度较细,-0.074 mm占77.84%,铁主要分布于0.045~0.074 mm粒级中;精矿铁品位62.39%、作业回收率9.89%,指标较差。为提高铁精矿质量和回收率,进行重选流程改造试验。结果表明,在最佳条件下,弱磁选—中磁选—混合磁精矿离心机重选全流程试验可获得作业产率34.13%、铁品位65.49%、作业回收率60.78%的合格铁精矿,较现场重选指标显著改善。该磁选—重选工艺流程可代替原螺旋溜槽重选流程。  相似文献   

6.
伊朗某磁铁矿石铁品位为58.60%,硫、磷含量较低,86.76%铁以磁铁矿的形式存在。矿石粒度较细,-2.36 mm粒级占54.00%。为确定该矿石合理的选矿工艺流程,进行选矿试验。结果表明,原矿预先分级—+2.36mm粗粒磨矿(-0.074 mm18.20%)—1次弱磁选—-2.36 mm细粒级直接弱磁选流程可获得TFe品位66.93%、回收率91.22%的合格铁精矿; 1粗1精螺旋溜槽重选可有效回收弱磁尾矿中铁,重选精矿与弱磁精矿合并后仍满足铁精矿合格标准。在此基础上,根据生产要求,该工艺可作为该矿石的推荐选矿流程。  相似文献   

7.
在对某砂状铬铁矿进行选矿工艺探索试验基础上,比较了磨矿—摇床1粗1精选别流程、磨矿—摇床重选预富集—湿式弱磁精选流程、磨矿—螺旋溜槽重选预富集—湿式弱磁精选流程分别处理矿石的效果,在结合选别设备特性的基础上,推荐磨矿—螺旋溜槽重选预富集—湿式弱磁精选流程为该试样的处理流程,可以获得Cr2O3品位为42.45%、回收率为75.56%的铬精矿,产品品质达到冶金用铬精矿工业指标要求。  相似文献   

8.
刘文胜  韩跃新  姚强  高鹏  刘杰 《金属矿山》2022,51(2):139-145
为解决鞍千矿业有限责任公司现行阶段磨矿—粗细分级—重磁浮联合分选工艺中重选精矿品位低、波 动大,浮选尾矿品位高、选别工艺流程长等难题,以鞍千现场半自磨粗粒湿式强磁预选精矿为研究对象,开展搅拌磨 矿—弱磁—强磁—反浮选短流程工艺优化试验研究,以期实现鞍千铁矿石的高效开发与利用。 结果表明,鞍千现场 半自磨—粗粒湿式强磁预选精矿在搅拌磨磨矿细度-0. 038 mm 占 80%条件下,经磁场强度 79. 58 kA / m 弱磁选,弱磁 尾矿经背景磁感应强度 700 mT 强磁选,强磁精矿以淀粉为抑制剂、CaO 为调整剂、TD-Ⅱ为捕收剂经 1 粗 1 精 3 扫反 浮选,反浮选精矿与弱磁选精矿合并为综合精矿,综合精矿铁品位为 68. 04%、回收率为 91. 78%,综合尾矿铁品位 8. 62%。 搅拌磨矿—弱磁—强磁—反浮选短流程充分利用铁矿磁性差异进行分选,实现了鞍千铁矿石的分质分选和 脉石的梯级抛除,对于鞍山式赤铁矿石经济高效开发利用具有重要的指导意义。  相似文献   

9.
某磁-赤混合铁矿粒度微细、组成复杂,先后进行了阶段磨矿-弱磁-强磁-混合精矿细磨脱泥-反浮选流程和阶段磨矿-弱磁-强磁-弱磁精矿细磨磁选得精-强磁精矿细磨脱泥-反浮选流程对比试验研究,结果表明:二个流程均可得到较高品位(TFe 66%以上)的铁精矿,对开发同类或近类复合微细铁矿具有一定的指导意义.  相似文献   

10.
祁东铁矿选矿工艺研究   总被引:3,自引:0,他引:3  
徐建本 《矿冶工程》1989,9(2):25-28
采用阶段磨选联合流程对祁东铁矿进行了详细研究。试验表明,阶段磨矿—弱磁、重选、强磁选;阶段磨矿—弱磁、重选、强磁—絮凝脱泥阴离子反浮选;阶段磨矿—弱磁、重选、强磁—絮凝脱泥三种联合选矿流程均可获得较好结果。前者有较大的应用前景。  相似文献   

11.
朝鲜某地区钛铁矿矿砂主要元素为铁、钛.铁矿物主要为钛铁矿,少量为磁铁矿.钛铁矿单体仅占43.70%,部分钛铁矿包裹脉石矿物,且包裹体细小.试验对溜槽重选,溜槽重选粗精矿磨矿-摇床重选、原矿分级重选等工艺流程进行了试验研究,最后确定采用溜槽重选-摇床再选-摇床精矿弱磁选和摇床中矿再磨-摇床-精矿弱磁选的工艺流程,试验获得铁精矿铁品位61.30%、回收率5.11%,钛精矿TiO2品位46.81%、TiO2回收率71.62%.  相似文献   

12.
南非某风化壳沉积钛铁矿石铁品位为19.06%、Ti O2品位为9.90%。为开发利用该矿石,对其进行了选矿试验研究。结果显示:采用干式强磁选抛尾—弱磁选除铁—螺旋溜槽重选—摇床精选的工艺流程可以获得铁品位49.05%、铁回收率33.75%、Ti O2品位21.02%、Ti O2回收率27.70%的铁精矿,铁品位38.84%、铁回收率16.70%、Ti O2品位47.12%、Ti O2回收率39.02%的钛精矿。在此条件基础上进行了不同工艺流程对比试验,综合各因素,推荐采用强磁干选抛尾—螺旋溜槽粗选—弱磁除铁—螺旋溜槽精选—摇床精选的试验流程。  相似文献   

13.
由北京矿冶研究总院研制的BL1500螺旋溜槽用于赤铁矿、镜铁矿、铬铁矿等弱磁性矿的原矿重选在选矿工业中得到了大量的应用。承德某铁矿首次将BL1500螺旋溜槽用于该矿磁铁矿磁选后的铁精矿再选,以解决磁铁矿在磁选中因磁团聚而影响铁精矿品位的问题。采用“磁-重”的联合流程对原流程进行改造,取得了良好的效果,经工业生产考核,改造后,在选厂总回收率不变的情况下,可以提高最终铁精矿品位2-3%。  相似文献   

14.
江苏某坡洪积型钛铁矿石TiO2品位2.63%,钛铁矿嵌布粒度细,矿石矿物组成复杂,黏土含量高。为开发利用该矿石资源,在工艺矿物学性质研究的基础上,首先进行了重选预选工艺和磁选预选工艺对比试验,磁选预选工艺抛除尾矿产率大且TiO2损失率较低。对磁选预选精矿在一段磨矿细度为-0.076 mm占60%、二段磨矿细度为-0.076 mm占90%条件下进行二阶段磨矿-阶段磁选试验,TiO2品位由6.78%提高至14.53%;二段强磁精矿采用螺旋溜槽重选,重选精矿以硫酸为pH调整剂、草酸为抑制剂、水玻璃为分散剂、MOH为捕收剂,经1粗4精1扫闭路浮选,能获得TiO2品位48.26%、回收率13.69%的钛精矿。因此,采用原矿强磁预选-预选精矿二阶段磨矿阶段磁选-磁选精矿螺旋溜槽重选-重选精矿浮选的联合选矿工艺,最终能获得TiO2品位高于48%的合格钛精矿。试验结果可以为坡洪积型钛铁矿石的开发利用提供参考依据。  相似文献   

15.
某钛精选厂钛粗精矿经过弱磁选—螺旋溜槽重选—强磁选生产流程年产出7万吨TiO2品位高达28%左右的尾矿。经试验研究,对该尾矿采用强磁选—分级—摇床重选的试验流程可得到合格的钛精矿(TiO2品位为48.23%,回收率为46.97%),提高了资源利用效率,为钛精选厂流程改造提供了依据。  相似文献   

16.
齐大山铁矿矿石铁品位为31.56%,其中FeO含量为6.59%,主要铁矿物为赤铁矿和磁铁矿,原采用阶段磨矿-粗细分级-重选-磁选-阴离子反浮选工艺,对微细粒铁矿物回收效果差。为改善细粒铁矿物的回收效果,提高选厂经济效益,对齐大山铁矿石开展了选矿工艺优化研究。结果表明:当一段磨矿细度为-0.074 mm占65%,二段磨矿细度为-0.074 mm占90%时,采用阶段磨矿-粗细分级-阶段重选-磁选-阴离子反浮选流程处理矿石,可以获得铁品位和回收率分别为66.80%和82.90%的综合精矿,其中重选精矿占比高达70.21%,弱磁选精矿占比为7.57%。一段螺旋溜槽粗选尾矿直接给入磁选-反浮选,能有效避免微细粒级铁矿物的损失;降低旋流器分级作业沉砂粒度,增加重选作业处理量;增加弱磁精选作业,直接产出最终精矿等措施,对降低浮选作业药剂用量和最终选矿成本具有重要意义。试验成果对实现鞍山式铁矿石的高效分选具有指导意义。  相似文献   

17.
江苏某坡洪积型钛铁矿石TiO2品位2.63%,钛铁矿嵌布粒度细,矿石矿物组成复杂,黏土含量高。为开发利用该矿石资源,在工艺矿物学性质研究的基础上,首先进行了重选预选工艺和磁选预选工艺对比试验,磁选预选工艺抛除尾矿产率大且TiO2损失率较低。对磁选预选精矿在一段磨矿细度为-0.076 mm占60%、二段磨矿细度为-0.076 mm占90%条件下进行二阶段磨矿—阶段磁选试验,TiO2品位由6.78%提高至14.53%;二段强磁精矿采用螺旋溜槽重选,重选精矿以硫酸为pH调整剂、草酸为抑制剂、水玻璃为分散剂、MOH为捕收剂,经1粗4精1扫闭路浮选,能获得TiO2品位48.26%、回收率13.69%的钛精矿。因此,采用原矿强磁预选—预选精矿二阶段磨矿阶段磁选—磁选精矿螺旋溜槽重选—重选精矿浮选的联合选矿工艺,最终能获得TiO2品位高于48%的合格钛精矿。试验结果可以为坡洪积型钛铁矿石的开发利用提供参考依据。  相似文献   

18.
鞍千磁铁矿石铁品位为29.25%,铁主要以磁铁矿的形式存在,磁铁矿中铁的分布率为79.02%,主要脉石矿物为石英。为高效开发利用该低品位铁矿石,强化磁选分选效率,进行短流程工艺优化试验。采用 了化学多元素分析、铁物相检测和XRD分析等手段对矿石性质进行分析,并在此基础上进行了新型流程设计,针对-1 mm、-2 mm、-3 mm、-4 mm 4种粒级高压辊磨破碎产物进行了一段弱磁预选试验、弱磁预选精矿再磨 再选试验和弱磁预选尾矿强磁再选探索试验。结果表明:①物料破碎粒度越细,弱磁预选精矿品位和回收率越高,由于高压辊磨设备处理细粒级物料效果较差,确定-3 mm为最佳破碎粒度,此时精矿铁品位为38.03%、 铁回收率为88.12%;②预选精矿再磨试验中,增加再磨细度,弱磁精选精矿的铁品位不断上升,铁作业回收率则不断下降,最佳磨矿细度为-0.038 mm占94.30%,此时铁的总回收率为81.99%;③强磁探索试验中,随着 磁场强度的增加,4个粒级的强磁精矿铁品位逐渐下降,铁作业回收率逐渐提高后趋于平稳,尾矿抛尾产率逐渐减少;④选取-3 mm弱磁尾矿,在背景磁感应强度为1.0 T、给矿速度1.3 kg/min、给矿水流量6.5 L/min 、转环转速2.0 r/min、脉动200 次/min的条件下,最终可获得铁品位为16.54%、铁作业回收率为80.93%的强磁精矿,其回收价值不高,故舍弃强磁流程。最终确定了“高压辊碎磨—弱磁预选—细磨—弱磁精选”工艺 流程替代原有的“阶段磨矿、粗细分选、重选—强磁选—阴离子反浮选”复杂长流程。试验完成了对鞍千矿业公司原有流程的优化,对鞍千矿业及鞍山地区磁铁矿选矿工艺指标改善具有参考意义。  相似文献   

19.
针对海南某铁矿山不断开采、矿石品质下降的问题,提出采用铁矿石分质分选的新思路,开展了弱磁选富集磁铁矿、反浮选回收赤铁矿的工艺流程试验。结果表明:原矿经过磨矿(-0.074mm占54.21%)—一段弱磁选(79.58k A/m)—弱磁精矿再磨(-0.045mm占63.82%)—二段弱磁选(79.58k A/m)获得铁品位62.42%、回收率19.28%的弱磁精矿,对一段弱磁尾矿经强磁选获得的强磁精矿与二段弱磁尾矿合并为混磁精矿,混磁精矿再磨至-0.045mm占85.52%,以淀粉为抑制剂、Ca Cl2为调整剂、Ts-2为捕收剂,经1粗1精3扫闭路反浮选,获得铁品位60.60%、回收率36.23%的浮选精矿。弱磁精矿和浮选精矿中铁矿物分别主要以磁铁矿和赤铁矿形式存在,主要脉石矿物皆为石英。  相似文献   

20.
鞍千磁铁矿石铁品位为29.25%,铁主要以磁铁矿的形式存在,磁铁矿中铁的分布率为79.02%,主要脉石矿物为石英。为高效开发利用该低品位铁矿石,强化磁选分选效率,进行短流程工艺优化试验。采用 了化学多元素分析、铁物相检测和XRD分析等手段对矿石性质进行分析,并在此基础上进行了新型流程设计,针对-1 mm、-2 mm、-3 mm、-4 mm 4种粒级高压辊磨破碎产物进行了一段弱磁预选试验、弱磁预选精矿再磨 再选试验和弱磁预选尾矿强磁再选探索试验。结果表明:①物料破碎粒度越细,弱磁预选精矿品位和回收率越高,由于高压辊磨设备处理细粒级物料效果较差,确定-3 mm为最佳破碎粒度,此时精矿铁品位为38.03%、 铁回收率为88.12%;②预选精矿再磨试验中,增加再磨细度,弱磁精选精矿的铁品位不断上升,铁作业回收率则不断下降,最佳磨矿细度为-0.038 mm占94.30%,此时铁的总回收率为81.99%;③强磁探索试验中,随着 磁场强度的增加,4个粒级的强磁精矿铁品位逐渐下降,铁作业回收率逐渐提高后趋于平稳,尾矿抛尾产率逐渐减少;④选取-3 mm弱磁尾矿,在背景磁感应强度为1.0 T、给矿速度1.3 kg/min、给矿水流量6.5 L/min 、转环转速2.0 r/min、脉动200 次/min的条件下,最终可获得铁品位为16.54%、铁作业回收率为80.93%的强磁精矿,其回收价值不高,故舍弃强磁流程。最终确定了“高压辊碎磨—弱磁预选—细磨—弱磁精选”工艺 流程替代原有的“阶段磨矿、粗细分选、重选—强磁选—阴离子反浮选”复杂长流程。试验完成了对鞍千矿业公司原有流程的优化,对鞍千矿业及鞍山地区磁铁矿选矿工艺指标改善具有参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号