首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of vegetation to remediate soil contaminated by recalcitrant hydrocarbons was tested under field conditions. Specifically, an evaluation was made of the effectiveness of deep rooting grasses, Johnsongrass and Canadian wild rye in the dissipation of TNT and PBB's in the soils freshly contaminated to an initial concentration of 10.17+/-1.35 for TNT and 9.87+/-1.23 mg/kg for PBB. The experiment used 72 (1.5m long and 0.1m diameter) column lysimeters with four treatments: Johnsongrass; wild rye grass; a rotation of Johnsongrass and wild rye grass; and unplanted fallow conditions. In the laboratory, immunoassay test procedures determined the TNT and PBB concentrations in the soil, leachate, herbage and root samples. The root characteristics such as total root length, rooting density, and root surface area were quantified to a depth of 1.5m. Changes in microbial biomass were assessed for both rhizosphere soil and the bulk soil during the 2-year study. The largest and most rapid loss in soil chemical concentration was for TNT, which decreased to less than 250 microg/kg, the detection limit, by 93 days after germination. The PBB was at or near the detection limit of 500 microg/kg by 185 days after germination. There was no perceptible difference in contaminant concentration in the soil between the vegetation treatments and/or with depth.  相似文献   

2.
Carbon mineralisation and plant germination and growth (Lactuca sativa seeds) tests have been performed in two soils of different properties, experimentally spiked with pentachlorophenol (PCP) or Cr (VI), in concentrations between 0.001 and 1000 mg kg(-1). The evaluation has been done considering the following parameters of carbon transformation test: soil cumulative basal respiration after 14 days incubation, substrate induced respiration after 12 h of glucose addition, and, in the plant germination and growth test: number of germinated seeds, root elongation and total biomass produced. The most sensitive assay found in our work has been carbon mineralisation test, from which the lowest toxic concentrations were obtained (especially substrate induced respiration test). In the plant germination and growth test, the measurement of root elongation has shown the best sensitiveness, followed by plant biomass and seed germination numbers. Regarding the contaminants, the highest toxicity, considering the minimum concentration with toxic effect, has been found in PCP (0.01 mg kg(-1)) in C mineralisation test in the granitic soil. For Cr, the minimum concentration with toxic effect has been 0.1 mg kg(-1), also in the C mineralisation test and the granitic soil. The granitic soil has shown more vulnerability to the pollutants assayed in the respiration test, whereas the calcareous soil has shown more vulnerability in the plant germination and growth test.  相似文献   

3.
水泥固化重金属污染土的淋滤特性试验研究   总被引:1,自引:0,他引:1  
固化稳定法是目前处理重金属污染土场地的常用方法之一。经过处理后的污染土,不仅在强度上有所提高,而且重金属污染离子亦能被有效固化稳定下来。目前,这方面的研究成果主要集中在固化污染土的工程性质变化方面,而对固化土中的重金属离子的滤出特性研究较少。通过系统的室内试验,以经水泥固化后的铅和锌污染土为研究对象,着重研究固化污染土中重金属离子的淋滤特性。试验结果表明:水泥固化重金属污染土后,随着固化剂掺量和养护龄期的增加,重金属的滤出率显著降低,并最终趋于稳定。在污染物掺量较低时,水泥对Pb2+的固化效果好于对Zn2+的固化效果;随着污染物掺量的增加,滤出液中Pb2+浓度的增幅要大于Zn2+浓度增幅。在污染物掺量较高时,水泥对Zn2+的固化效果好于对Pb2+的固化效果。  相似文献   

4.
Metal content of charcoal in mining-impacted wetland sediments   总被引:1,自引:0,他引:1  
Charcoal is well known to accumulate contaminants, but its association with metals and other toxic elements in natural settings has not been well studied. Association of contaminants with charcoal in soil and sediment may affect their mobility, bioavailability, and fate in the environment. In this paper, natural wildfire charcoal samples collected from a wetland site that has been heavily contaminated by mine waste were analyzed for elemental contents and compared to the surrounding soil. Results showed that the charcoal particles were enriched over the host soils by factors of two to 40 times in all contaminant elements analyzed. Principal component analysis was carried out on the data to determine whether element enrichment patterns in the soil profile charcoal are related to those in the soils. The results suggest that manganese and zinc concentrations in charcoal are controlled by geochemical processes in the surrounding soil, whereas the concentrations of arsenic, lead, zinc, iron, phosphorus, and sulfur in charcoal are unrelated to those in the surrounding soil. This study shows evidence that charcoal in soils can have a distinct and important role in controlling contaminant speciation and fate in the environment.  相似文献   

5.
Dynamic cone penetrometer (DCP) has been used for decades to estimate the shear strength and stiffness properties of the subgrade soils. There are several empirical correlations in the literature to predict the resilient modulus values at only a specific stress state from DCP data, corresponding to the predefined thicknesses of pavement layers (a 50 mm asphalt wearing course, a 100 mm asphalt binder course and a 200 mm aggregate base course). In this study, field-measured DCP data were utilized to estimate the resilient modulus of low-plasticity subgrade Piedmont residual soil. Piedmont residual soils are in-place weathered soils from igneous and metamorphic rocks, as opposed to transported or compacted soils. Hence the existing empirical correlations might not be applicable for these soils. An experimental program was conducted incorporating field DCP and laboratory resilient modulus tests on “undisturbed” soil specimens. The DCP tests were carried out at various locations in four test sections to evaluate subgrade stiffness variation laterally and with depth. Laboratory resilient modulus test results were analyzed in the context of the mechanistic-empirical pavement design guide (MEPDG) recommended universal constitutive model. A new approach for predicting the resilient modulus from DCP by estimating MEPDG constitutive model coefficients (k1, k2 and k3) was developed through statistical analyses. The new model is capable of not only taking into account the in situ soil condition on the basis of field measurements, but also representing the resilient modulus at any stress state which addresses a limitation with existing empirical DCP models and its applicability for a specific case. Validation of the model is demonstrated by using data that were not used for model development, as well as data reported in the literature.  相似文献   

6.
The validity of a quality standard for cadmium (Cd) in representative agricultural Mediterranean soils under an accumulator crop (Lactuca sativa L.) is evaluated in this work considering both its effect on the crop growth (biomass production) and the metal accumulation in the edible part of the plant. Four soils with different properties relevant to regulate the behaviour of heavy metals were selected from the Valencian Region, a representative area of the European Mediterranean Region. For all soils, the effective concentration of added Cd causing 50% inhibition (EC50) on the biomass production was much higher than the minimum legal concentration used to declare soils as contaminated by cadmium, i.e. 100 times the baseline value for Cd, in Spain (Spanish Royal Decree 9/2005). As expected, Cd toxicity in the crop was higher in the soils having less carbonate content. On the other hand, for all soils, from the second dose on, which represents 10-times the baseline value for Cd, the metal content in crops exceeded the maximum level established for leaf crops by the European legislation (Regulation EC no. 466/2001). Soil salinity and coarse textures make the accumulation of Cd in the edible part of the plant easier. Therefore, the legal baseline soil cadmium content established by the Spanish legislation seems not valid neither from the point of view of the effect on the crop growth nor from the point of view of the metal accumulation in the edible part of the plant. In order to realistically declare contaminated soils by heavy metals, soil quality standards should be proposed taking into account the soil properties. Further research in other agricultural areas of the region would improve the basis for proposing adequate soil quality standards for heavy metals as highlighted by the European Thematic Strategy for Soil Protection.  相似文献   

7.
Stabilisation/solidification (S/S) is an effective technique for reducing the leachability of contaminants in soils. Very few studies have investigated the use of ground granulated blast furnace slag (GGBS) for S/S treatment of contaminated soils, although it has been shown to be effective in ground improvement. This study sought to investigate the potential of GGBS activated by cement and lime for S/S treatment of a mixed contaminated soil. A sandy soil spiked with 3000 mg/kg each of a cocktail of heavy metals (Cd, Ni, Zn, Cu and Pb) and 10,000 mg/kg of diesel was treated with binder blends of one part hydrated lime to four parts GGBS (lime-slag), and one part cement to nine parts GGBS (slag-cement). Three binder dosages, 5, 10 and 20% (m/m) were used and contaminated soil-cement samples were compacted to their optimum water contents. The effectiveness of the treatment was assessed using unconfined compressive strength (UCS), permeability and acid neutralisation capacity (ANC) tests with determination of contaminant leachability at the different acid additions. UCS values of up to 800 kPa were recorded at 28 days. The lowest coefficient of permeability recorded was 5 × 10− 9 m/s. With up to 20% binder dosage, the leachability of the contaminants was reduced to meet relevant environmental quality standards and landfill waste acceptance criteria. The pH-dependent leachability of the metals decreased over time. The results show that GGBS activated by cement and lime would be effective in reducing the leachability of contaminants in contaminated soils.  相似文献   

8.
Sorption of ionizable organic compounds on HDTMA-modified loess soil   总被引:4,自引:0,他引:4  
A natural loess soil was modified using a cationic surfactant, hexadecyltrimethylammonium (HDTMA) bromide. Sorption of ionizable organic compounds (IOCs), 2,4-dichlorophenol (DCP), p-nitroaniline (NA) and benzoic acid (BA), on the modified soil was determined under different pH conditions. The objective of this study was to examine the sorptive characteristics of IOCs on HDTMA-modified loess soil as a function of pH in an attempt to establish the sorptive models and mechanisms for predicting the sorptive behaviors of IOCs on the HDTMA-modified loess soil. The sorption isotherms of DCP, NA and BA with the soil were obtained using the batch equilibration method. Results indicated that the sorption isotherms of IOCs, regardless of ionic or neutral forms, were non-linear and obeyed to the Freundlich equation. A model describing the sorption of IOCs on the HDTMA-modified loess soil was derived from the experimental data. The model well predicted the sorption of DCP from individual sorption of both ionic and neutral species of the IOC. In binary solute systems, sorption of NA was reduced in the presence of DCP or BA, which indicated that DCP and BA had a competitive effect on the sorption of NA on the HDTMA-modified loess soil. The effect of DCP on the sorption of NA gradually increased with decreasing pH from 10.8 to 6.7, suggesting a stronger effect of neutral DCP than that of the ionic species on the sorption of NA. Modification of loess soil may effectively immobilize ionizable organic contaminants in soil environment.  相似文献   

9.
Plants grown in lead contaminated soils can accumulate lead from the adherence of dust and translocation into the plant tissue. In order to evaluate the potential health hazard due to the consumption of plants grown in residential gardens contaminated by lead, a survey of the lead concentrations in a typical array of edible vegetables, fruits and herbs was conducted. Samples of garden plants harvested from the field were washed with detergent or water alone to remove adhered soil. They were dried, separated into sections including root, shoot and edible fruit, and then analyzed for lead content using inductively coupled plasma-atomic emission spectrometry (ICP-AES). Soil samples, taken in conjunction with the plant harvesting, were analyzed using flame atomic absorbance (FAA). A pattern of lead transference from soil through the root to the stem and leaves of garden crops was found. The majority of the lead was concentrated in the roots (root:soil ranging from 0.02 to 0.51), with some translocation into the shoots (shoot:soil as high as 0.10). This pattern is a concern particularly for crops in which the root, stems, stalks or leaves are edible. The lead concentration in fruiting vegetables was less than the detection limit of 10 ppm (microgram lead/gram dry plant matter). Some edible portions of the leafy vegetables and herbs, however, were found to have lead levels that, if consumed, could contribute to the total body burden of lead. Therefore, urban gardeners should test the lead levels in their soils and develop strategies to ensure safety.  相似文献   

10.
Aluminum (Al) toxicity in acid soils is a major growth-limiting factor for cereal crops in many parts of the world. The most striking effect of high Al concentration in acid soils is stunting of the root system. Liming reduces Al toxicity in surface soils; however, cereal breeders must be prepared to develop cultivars that have tolerance to soil acidity. A 4 day root bioassay, originally used to identify Al toxics soils, was adapted to evaluate tolerance to soil acidity of cereal species and genotypes. Acid soil tolerance was related to the extent of inhibition of root elongation in an Al-toxic soil (pH 4.2) relative to root elongation in the same soil treated with lime (pH5.2). Of the entries, 18% were tolerant or moderately tolerant, and 48% were susceptible or moderately susceptible when 75 bread wheat (Triticum aestivum L.) genotypes were tested. None of the 22 entries of durum wheat (Triticum durum Desf.) were tolerant or moderately tolerant, indicating much lower adaptability to soil acidity than bread wheat. The following ranking of acid soil tolerance of cereal species was obtained: rye (Secale cereale L.) #62;oats (Avena sativa L.) #62;millet(Panicum miliaceum L.) #62;bread wheat (Triticum aestivum L.) #62;barley (Hordeum vulgare L.) #62;durum wheat (Triticum durum Desf.). Variation in tolerance within the other cereal species was much lower than within bread wheat species. The root bioassay method is relatively quick, simple and inexpensive. The method can also be used to screen early-generation populations because assayed seedlings are still viable and can be transplanted for growing until harvest.  相似文献   

11.
Polycyclic aromatic hydrocarbons (PAHs), a class of POPs, are widely distributed in the environment. Phytoremediation has long been recognized as a cost-effective method for removal of PAHs pollutants from soil. This study was conducted to investigate the capability of three plant species separately and their combination to promote the degradation of phenanthrene and pyrene in soil. The performance of three plant species, maize, ryegrass and white clover for phenanthrene and pyrene removal was also compared. The result showed that the presence of vegetation significantly enhances the dissipation of phenanthrene and pyrene in the soil environment. This effect was especially marked with maize. At the end of 60 days treatment, phenanthrene and pyrene concentrations in treated soils declined from an initial 52.52 mg kg-1 and 58.19 mg kg-1 to 4.15 mg kg-1 and 6.77 mg kg-1, respectively, indicating that phenanthrene and pyrene was successfully removed by maize. Around 92.10% of phenanthrene and 88.36% of pyrene were removed from soils planted with maize. Within approximately two months experimental period, the dissipation extent showed that the 4-ring pyrene was more recalcitrant than 3-ring phenanthrene. Although the extents did not differ significantly among three tested species, the rates of degradation were different. The maize treatment had the highest rate of contaminant removal after two months, followed by white clover and annual ryegrass. As compare to single plant cultivation, combined plants cultivation significantly enhanced the destruction rate and extent of phenanthrene and pyrene in soils. Around 98.22% of phenanthrene and 95.81% of pyrene were removed from soils planted with maize and ryegrass. This research indicates the potential for phenanthrene and pyrene mineralization in combined plants cultivation, which may be especially useful for phytoremediation of soils contaminated with PAHs.  相似文献   

12.
The presence of energetic materials (used as explosives and propellants) at contaminated sites is a growing international issue, particularly with respect to military base closures and demilitarization policies. Improved understanding of the ecotoxicological effects of these materials is needed in order to accurately assess the potential exposure risks and impacts on the environment and its ecosystems. We studied the toxicity of the nitroaromatic energetic material 2,4-dinitrotoluene (2,4-DNT) on alfalfa (Medicago sativa L.), barnyard grass (Echinochloa crusgalli L. Beauv.), and perennial ryegrass (Lolium perenne L.) using four natural soils varying in properties (organic matter, clay content, and pH) that were hypothesized to affect chemical bioavailability and toxicity. Amended soils were subjected to natural light conditions, and wetting and drying cycles in a greenhouse for 13 weeks prior to toxicity testing to approximate field exposure conditions in terms of bioavailability, transformation, and degradation of 2,4-DNT. Definitive toxicity tests were performed according to standard protocols. The median effective concentration (EC50) values for shoot dry mass ranged from 8 to 229 mg kg− 1, depending on the plant species and soil type. Data indicated that 2,4-DNT was most toxic in the Sassafras (SSL) and Teller (TSL) sandy loam soils, with EC50 values for shoot dry mass ranging between 8 to 44 mg kg− 1, and least toxic in the Webster clay loam soil, with EC50 values for shoot dry mass ranging between 40 to 229 mg kg− 1. The toxicity of 2,4-DNT for each of the plant species was significantly (p ≤ 0.05) and inversely correlated with the soil organic matter content. Toxicity benchmark values determined in the present studies for 2,4-DNT weathered-and-aged in SSL or TSL soils will contribute to development of an Ecological Soil Screening Level for terrestrial plants that can be used for ecological risk assessment at contaminated sites.  相似文献   

13.
The compost worm Eisenia fetida was used to demonstrate the avoidance by worms of Cu contaminated soil. Soils were collected from two avocado orchards in north eastern New South Wales, Australia. In avoidance trials, worms preferred non-contaminated control soils, sourced from adjacent to the orchard or an OECD control soil, when Cu residues in the orchard soils reached 4-34 mg Cu kg(-1). At levels of 553 mg Cu kg(-1), 90% avoidance of orchard soil was observed. The worms showed preference for the soils in the order; uncontaminated field derived soil >OECD standard soil >Cu contaminated orchard soil. It was demonstrated that OECD standard soil was less favoured by worms than control soil derived from the test sites. While Cu was found to be the primary influence on worm avoidance in orchard soil, other factors, such as elevated soil Zn concentrations, could not be discounted. In a corresponding field study, it was shown that earthworms occurred at lower density in orchard soils with a history of Cu fungicide use. In one such orchard, soil Cu concentrations of up to 270 mg kg(-1) were determined and no earthworms were found, while nearby control sites and less contaminated sites within the orchard had up to 40.7 g m(-2) earthworm biomass. Considering the potential for Cu to accumulate in these soils and the subsequent impacts on soil biota, our results highlight the importance of limiting future application of Cu based fungicides.  相似文献   

14.
Throughout the USA, numerous sites exist where the soils have been contaminated by polycyclic aromatic hydrocarbons (PAHs). These compounds may be toxic, mutagenic and/or carcinogenic, so these sites threaten human health and the environment and prompt remediation is warranted. In situ flushing with surfactants/cosolvents has shown promise for treating PAH‐contaminated soils that are uniform and possess a high permeability, but the efficiency of this process is severely limited when heterogeneous and/or low permeability soils are present. For these difficult situations, electrokinetically enhanced in situ flushing offers great potential, but this method is highly dependent on the type of purging agent that is used. Thus, in this laboratory investigation, batch desorption experiments were conducted to evaluate different surfactants/cosolvent solutions for use in electrokinetically enhanced in situ flushing. The surfactants/cosolvents were evaluated on their ability to desorb and solubilize phenanthrene, a representative PAH, from two widely varying clayey soil types. The soils were artificially contaminated at four PAH concentrations, and batch tests were conducted using six different surfactant/cosolvent solutions. The results indicated that phenanthrene was more strongly bound to the soil with the higher organic content, and the surfactants with a higher hydrophile – lipophile balance number (HLB) caused greater PAH desorption and solubilization. Furthermore, the surfactant solutions performed better when they were used at a higher concentration. Compared to the cosolvent solution or a combined mixture of the cosolvent and surfactant solutions, greater desorption and solubilization of the contaminant occurred when the surfactant solution was used by itself.  相似文献   

15.
In this study, a superabsorbent polymer (SAP; Super‐AB‐A‐200) was used for the amendment of the water‐holding capacity of soil on a steep surface. Three concentrations of SAP [0.20, 0.40 and 0.60% (w w?1)] and a control (0%) were blended with sandy soil. This study aimed to evaluate the evaporation rate, water retention capacity and saturated water content of polymer‐treated soils for determining plant survival and seed germination rate through cylinder and steep surface experiments. The results demonstrated that sandy soil treated with SAP showed significantly enhanced soil water holding compared with the controls. Furthermore, the seed germination rate was significantly higher in polymer‐treated soils than in the controls. The survival times of grass and ligneous plants were lengthened under water stress conditions. Finally, treatment with 0.40% SAP was the optimum selection for sandy soil amendment on steep surfaces.  相似文献   

16.
There is strong evidence of continuously increasing contamination of soils with platinum group elements (PGE), in particular with platinum (Pt) from vehicle exhaust catalysts in roadside soils. However, knowledge about the effects of Pt contamination on soil processes is very limited. The objective of this study was to investigate whether the contamination of soils with Pt at realistic environmental levels leads to observable adverse effects on selected indicator parameters of the carbon and nitrogen turnover in soils. Incubation experiments with artificially contaminated soils and solutions containing dissolved organic matter (DOM) were carried out by the use of milled material from a Pt-containing vehicle exhaust catalyst. Interaction of the catalyst material with the soil resulted in a mobilization of Pt into the dissolved phase reaching up to 0.1% of the added Pt. The amount of Pt mobilization seemed to be mainly driven by the pH of the soil. Mineralization of carbon and nitrogen did not reveal any significant adverse effect of the Pt addition as compared to the control samples. Future studies dealing with Pt effects on soil processes should focus on environmental conditions favoring Pt mobilization, e.g. such as very low pH values or large concentrations of DOM.  相似文献   

17.
水泥固化重金属污染土干湿循环特性试验研究   总被引:7,自引:0,他引:7  
水泥固化/稳定法是修复污染土地基的常用方法,修复后的固化土在外界环境干湿循环作用下的稳定性如何是事关修复成败的关键所在。通过系统的室内试验,着重研究了水泥固化Pb2+、Zn2+污染土在干湿循环作用下的强度特性、淋滤特性以及微结构变化规律,揭示了水泥固化重金属污染土的微观作用机制。试验结果表明,固化土体的强度及淋滤特性随着水泥掺量的增加得到了显著改善。固化重金属污染土的无侧限抗压强度随干湿循环次数的增加先增大,达到峰值后,随干湿循环次数的继续增大而减小。污染物掺量较低时,重金属离子的滤出浓度在干湿循环作用初期略有降低,此后则有所增加,但变化幅度较小;高污染物掺量时,滤出液中的重金属离子浓度较高,且随着干湿循环次数的增加而不断增大。低污染物掺量下,水泥对Pb2+及Zn2+固化效果相差不大;高污染物掺量下,水泥对Zn2+的固化效果较好。经过干湿循环作用后的固化土的扫描电镜试验结果与与其宏观力学及淋滤特性指标变化规律一致,从微观角度揭示了固化土工程性质的变化机制。  相似文献   

18.
含根量对原状与重塑草根加筋土强度影响的试验研究   总被引:8,自引:0,他引:8  
用室内三轴试验方法研究了原状和重塑草根加筋土的强度特性,分析含根量对土体强度的影响,并对二者强度的差异进行量化描述。试验结果表明:对于原状草根加筋土,含根量的增加对内摩擦角基本无影响,但可提高土体黏聚力,并且黏聚力先增加再基本保持不变;对于重塑草根加筋土,存在最优含根量使其强度最高,并且该值与围压相关,随围压的增大,该值增加;重塑草根加筋土的含根量是原状土的4~6倍时,二者土体破坏时的主应力差值基本相等。  相似文献   

19.
以某汽配厂搬迁遗留电镀车间的镍(Ni)、锌(Zn)复合污染土为研究对象,研究2种新型固化剂SPB和SPC固化稳定化污染土的强度及环境安全特性。通过室内试验研究2种固化剂修复污染土的无侧限抗压强度(qu)、干密度(rd)、酸碱度(pH)、酸缓冲能力(ANC)及重金属浸出毒性、重金属形态分布等参数随固化剂掺量和养护龄期的变化规律。室内试验结果表明,污染土经固化剂SPB和SPC处理后q_u和rd显著提高,相同固化剂掺量、反应稳定(28 d)后,SPC固化土qu略高于SPB固化土,2种固化土rd基本相同;固化剂SPB和SPC使活性形态重金属转化为较稳定形态,重金属浸出浓度显著降低,但2种固化剂对重金属的固化稳定化效果存在差异,固化剂SPC固化稳定化Ni的效果优于固化剂SPB,而固化剂SPB固化稳定化Zn的效果更优;固化土pH显著提高,其中固化剂掺量10%、反应稳定后,SPB和SPC固化土pH分别为9.51和9.07;SPB和SPC固化土ANC均显著提高。另外,小试试验结果表明,SPC固化土pH低于PC固化土;固化剂SPC在短期养护(7 d)的固化效果优于PC。研究结果可以为固化剂SPB和SPC在实际工程的现场应用提供参考和建议。  相似文献   

20.
重金属污染在我国已受到普遍关注,而对重金属污染土的物理特性的研究还处于起步阶段。采用南京地区特有的粉质粘土、长江漫滩相淤泥质粉质粘土,进行相关的重金属锌污染后的物理特性研究。通过室内添加硝酸锌溶液配制3种不同浓度的重金属锌污染土,并进行土壤污染前后粒度成分、液塑限、活动度、土粒比重以及pH值等试验的测试分析,研究比较了粉质粘土污染前后随着重金属锌的浓度不同其相关物理性质的变化规律。试验表明,随着Zn浓度的增加,土粒比重,液塑限,粉粒含量和pH值减小,而粘粒含量和塑性指数呈增大趋势。其土体的活动度也随着Zn浓度的增加在不断的降低,并且降低趋势逐渐减缓。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号