首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unsteady flame propagation in a tube is examined by introducing a mean velocity variation larger than the burning velocity to a stabilized flame for a period longer than the reaction time scale. In our previous work, stabilized propane-air flames were classified as either one-dimensional or two-dimensional flames. The eventual extinction during the velocity increase was categorized as either acoustic extinction or boundary layer extinction. In this work, the effects of a nonunity Lewis number were estimated through experiments with a methane-air flame; the eventual extinction during the velocity decrease was investigated in more detail; and the growth of the extinction boundary layer was analyzed with a transient one-dimensional model of the flame stretch. In our experiments, the Lewis number did not affect the existence or characteristics of the critical velocity and the characteristic time for boundary layer extinction. An additional critical velocity was found, however, for acoustic extinction when the Lewis number was smaller than unity. In the transient one-dimensional model, the velocity transition along the flame was calculated with a continuity equation and an axial momentum equation. The spatial gradient of the burning velocity and the extinction criterion were simplified with the experimental results and some theoretical studies. The analysis shows that the unsteady flame stretch at the flame edge during a large axial velocity variation is the prevailing cause of the growth of the extinction boundary layer. These results provide some evidence that flame stretch affects the behavior of the flame edge; they also suggest the cause of the finger flame. The findings help explain the unsteady behavior of premixed flames near a flammability limit.  相似文献   

2.
为研究管道截面突缩对爆轰波起爆特性的影响,在突缩比为5:3的截面突缩管道及直管内对不同初始压力下甲烷氧气预混气体的起爆特性进行了实验研究,利用离子探针获得管道内火焰传播速度,并通过二维数值模拟探究了3种不同突缩比的截面突缩管道内火焰及压力的传播特性.实验结果表明,截面突缩管道内爆轰波起爆距离随着初始压力的降低而逐渐增加...  相似文献   

3.
采用速度匹配法研究本生灯火焰的稳定点位置   总被引:1,自引:0,他引:1  
采用理论预测与实验研究的方法分析了本生灯火焰的稳定点位置与气流速度的关系,因为火焰稳定点的存在与否直接决定了火焰的存在与否.理论预测采用速度匹配法,通过分析本生灯出口附近冷态流场中气流速度分布与火焰传播速度分布的相对关系,并引入壁面淬熄的影响,预测出火焰稳定点的空间位置并得到了经验关系式.实验则以甲烷-空气的预混层流本生灯火焰为研究对象,确定了火焰稳定点位置与气流速度的相对关系.实验结果与Bernard Lewis 的预测不同,即随流速增大,火焰稳定点会朝向射流的下游和射流中心线方向移动.而根据得到的经验关系式预测出的火焰稳定点位置与实验结果符合良好,精度在±20%以内,表明速度匹配法能够准确预测火焰稳定点的位置.  相似文献   

4.
The effect of the non-uniform profile of scalar variables, such a fuel at the upstream and temperature at the downstream of the flame zone was discussed theoretically to elucidate; (1) the deviation of motion from the steady state case and (2) the hysteresis of premixed flames response to the equivalence ratio oscillations seen in an experimental and numerical works. One-dimensional integral model for the non-uniform scalar variable profile with low frequency equivalence ratio oscillation has been developed. Here, the wavelength of the oscillation is assumed to be larger than the nominal flame thickness. Through the integral analysis, we obtained the relation of the flame propagation speed for steady and unsteady cases depending on the non-uniform scalar profile at the upstream and downstream of the flame zone. Hysteresis of the flame propagation speed is found due to the transport of fuel and heat by the non-uniform scalar profile at the upstream and downstream of the flame zone. This result qualitatively agreed with the numerical results of a response of the stagnation laminar CH4/air premixed flames for a low equivalence ratio oscillation frequency.  相似文献   

5.
为研究预混气体在多孔介质燃烧器中的火焰燃烧特性,设计了一种新型多孔介质燃烧器,其中多孔介质区域由氧化铝圆柱体有序堆积而成.分别研究了当量比和入口速度对甲烷/空气预混气体在多孔介质燃烧器中的火焰温度分布、火焰最高温度以及火焰传播速度的影响.结果 表明:在当量比0.162~0.324、入口速度0.287~0.860 m/s...  相似文献   

6.
A premixed flame propagating through a combination of vortices in a tube/channel is studied using direct numerical simulations of the complete set of combustion equations including thermal conduction, diffusion, viscosity, and chemical kinetics. Two cases are considered, a single-mode vortex array and a multimode combination of vortices obeying the Kolmogorov spectrum. It is shown that the velocity of flame propagation depends strongly on the vortex intensity and size. The dependence on the vortex intensity is almost linear in agreement with the general belief. The dependence on the vortex size may be imitated by a power law ∝D2/3. This result is different from theoretical predictions, which creates a challenge for the theory. In the case of the Kolmogorov spectrum of vortices, the velocity of flame propagation is noticeably smaller than for a single-mode vortex array. The flame velocity depends weakly on the thermal expansion of burning matter within the domain of realistically large expansion factors. Comparison to the experimental data indicates that small-scale turbulence is not the only effect that influences the flame velocity in the experimental flows. Large-scale processes, such as the Darrieus-Landau instability and flame-wall interaction, contribute considerably to the velocity of flame propagation. Still, on small scales, the Darrieus-Landau instability becomes important only for a sufficiently low vortex intensity.  相似文献   

7.
《Combustion and Flame》2001,124(1-2):311-325
We have investigated lifted triple flames and addressed issues related to flame stabilization. The stabilization of nonpremixed flames has been argued to result due to the existence of a premixing zone of sufficient reactivity, which causes propagating premixed reaction zones to anchor a nonpremixed zone. We first validate our simulations with detailed measurements in more tractable methane–air burner-stabilized flames. Thereafter, we simulate lifted flames without significantly modifying the boundary conditions used for investigating the burner-stabilized flames. The similarities and differences between the structures of lifted and burner-stabilized flames are elucidated, and the role of the laminar flame speed in the stabilization of lifted triple flames is characterized. The reaction zone topography in the flame is as follows. The flame consists of an outer lean premixed reaction zone, an inner rich premixed reaction zone, and a nonpremixed reaction zone where partially oxidized fuel and oxidizer (from the rich and lean premixed reaction zones, respectively) mix in stoichiometric proportion and thereafter burn. The region with the highest temperatures lies between the inner premixed and the central nonpremixed reaction zone. The heat released in the reaction zones is transported both upstream (by diffusion) and downstream to other portions of the flame. Measured and simulated species concentration profiles of reactant (O2, CH4) consumption, intermediate (CO, H2) formation followed by intermediate consumption and product (CO2, H2O) formation are presented. A lifted flame is simulated by conceptualizing a splitter wall of infinitesimal thickness. The flame liftoff increases the height of the inner premixed reaction zone due to the modification of the upstream flow field. However, both the lifted and burner-stabilized flames exhibit remarkable similarity with respect to the shapes and separation distances regarding the three reaction zones. The heat-release distribution and the scalar profiles are also virtually identical for the lifted and burner-stabilized flames in mixture fraction space and attest to the similitude between the burner-stabilized and lifted flames. In the lifted flame, the velocity field diverges upstream of the flame, causing the velocity to reach a minimum value at the triple point. The streamwise velocity at the triple point is ≈0.45 m s−1 (in accord with the propagation speed for stoichiometric methane–air flame), whereas the velocity upstream of the triple point equals 0.7 m s−1, which is in excess of the unstretched flame propagation speed. This is in agreement with measurements reported by other investigators. In future work we will address the behavior of this velocity as the equivalence ratio, the inlet velocity profile, and inlet mixture fraction are changed.  相似文献   

8.
An analytical and experimental study of a methane diffusion flame in the region adjacent to a vertical flat burner is made. The appropriate boundary layer equations including one-dimensional non-gray non-homogeneous thermal radiation formulated on the basis of the exponential wide-band model are solved by the local non-similarity method to yield the gas species, laminar velocity and temperature profiles inside the diffusion flame boundary layer. It is demonstrated that variable physical properties of the gas mixture have important effects on the flame temperature and structure. The diffusion flame shape and temperature distribution in the boundary layer have also been measured by a Mach-Zehnder interferometer to verify the theoretical results. The peak flame temperature, its location and the temperature profile inside the flame sheet are accurately predicted with the two-equation solutions which, however, underestimate the boundary layer thicknesses. Based on these results, the feasibility of a gray gas radiation model is also explored.  相似文献   

9.
The characteristics of cellular flames generated by intrinsic instability has been studied using two-dimensional (2-D) and three-dimensional (3-D) unsteady calculations of reactive flows, based on the compressible Navier–Stokes equation. Three basic types of phenomena, responsible for the intrinsic instability of premixed flames, are examined here, i.e. hydrodynamic, body-force and diffusive-thermal effects. Cellular flames are generated by these effects, and their characteristics—cell size, cell depth, flame-surface area, and flame velocity—depend on the adiabatic flame temperature, acceleration, and Lewis number. As intrinsic instability becomes stronger, the flame–surface area and flame velocity of cellular flames increase, and the behavior of cellular-flame fronts becomes unstable. The increment in the flame–surface area and the flame velocity of 3-D cellular flames is about twice that of 2-D cellular flames. This is due to the difference in the disposition of cells between 2-D and 3-D flames. Moreover, the flame velocity of cellular flames depends strongly on the length of computational domain in the direction tangential to the flame surface. As the length of computational domain becomes larger, the flame velocity increases. This is because the long-wavelength components of disturbances play an important role in the shape of cellular flames, i.e. the flame–surface area. Next, colliding interaction of a vortex pair with a premixed flame has been numerically studied in order to understand how the vortex affects the flame and how the flame affects the vortex. Three types of interacting behavior appear, depending on the ratio of the maximum circumferential velocity of the vortex to the burning velocity of the flame. The temporal evolution of the curvature, the strain rate, the stretch rate at the stagnation point, and that of the flame surface area and the global burning velocity are also analyzed, with different Lewis numbers and vortex strengths. Flame propagation along a vortex core, i.e. vortex bursting, is also numerically studied in order to understand how the vortex affects the flame propagation and how the flame affects the vortex. It is shown that flame evolution along a fine vortex tube is related to the formation of the Azimuthal component of vorticity, which is produced by convection and stretch effects, and that the density ratio of the flame and the Reynolds number of the vortex affect the propagation velocity. Flame propagation in a rotating cylinder has been also reviewed.  相似文献   

10.
微细通道中甲烷与氧气的预混燃烧   总被引:4,自引:0,他引:4  
对微细通道中甲烷/氧气预混火焰传播性质进行了实验研究.确定了微细通道中不同甲烷浓度下的火焰传播速度,以及混合气体流量与火焰传播速度的关系.结果表明,混合气体流量对火焰传播速度有显著的影响,在微细通道中火焰传播速度的分布趋势与宏观尺度下火焰传播速度的分布趋势基本相同,但在数值上随着流量的不同相差较大.实验证明,在室温条件下,甲烷和氧气预混火焰可以在细管中稳定停留在一点燃烧,并且可以很好地控制其移动;当量比为1.0时火焰传播速度受流量影响最大.  相似文献   

11.
A theoretical analysis is described to study the effect of centrifugal acceleration, especially high centrifugal acceleration, i.e. more than 200 times of gravity acceleration (200g), on the premixed flame speed in a rotating closed tube. Based on one-dimensional (1-D) steady adiabatic flame model, simplified governing equations are directly solved by integration method in the reaction zone. A theoretical prediction that describes the premixed flame speed in a rotating closed tube is obtained. The theoretical prediction agrees well with the experimental data obtained by Lewis & Smith. The result verifies that the flame speed accelerated by the centrifugal force is nearly proportional to the square root of the centrifugal acceleration. It is shown by theoretical analysis that the flame speed in a rotating closed tube is determined by the initial temperature, the critical ignition temperature, the adiabatic flame temperature and the thicknesses of reaction zone. The premixed flame speed in a rotating closed tube increases nearly linearly with the increasing of the initial temperature or square root of the thicknesses of reaction zone, or with decreasing of the critical ignition temperature or the adiabatic flame temperature.  相似文献   

12.
通过模拟丙烷/空气预混火焰在不同温度平板阻火单元狭缝中传播与淬熄的过程,发现阻火单元温度变化对火焰在狭缝中传播与淬熄有非常重要的影响,得出了在丙烷/空气预混火焰不同阻火单元温度影响下火焰传播速度与平板狭缝间距、淬熄长度之间的关系.发现阻火单元温度越高,相同狭缝间距的火焰淬熄距离越长;狭缝间距越大,火焰速度越大,阻火单元温度变化对淬熄距离影响越明显.  相似文献   

13.
In this paper, the premixed flame propagation in a closed tube is surveyed using Computational Fluid Dynamics. The propagation characteristics of premixed flame are obtained coupling a single-step reaction mechanism with a laminar flame model. Three single-step reaction mechanisms are established with different reaction orders for hydrocarbon fuels. This study is to establish a wider range of reaction mechanisms and represent actual experimental conditions better. The numerical simulation results demonstrate that reaction orders can affect the tulip flame development. As the flame spreads, the tulip flame fronts become wrinkled. When the reaction order is 2, there are more wrinkles in the flame front and the degree of wrinkles is more obvious. Reaction orders also affect the flame tip velocity and the flame skirt velocity. The main reason is that laminar flame speeds are significantly different. When the reaction orders are 1.5 and 2, laminar flame speeds are mainly affected by temperature, which respectively increase by about 25% and 75%. When the reaction order is 1, the pressure is crucial for the variation of laminar flame speed. The laminar flame speed decreases by about 33%.  相似文献   

14.
The self-acceleration characteristics of a syngas/air mixture turbulent premixed flame were experimentally evaluated using a 10% H2/90% CO/air mixture turbulent premixed flame by varying the turbulence intensity and equivalence ratio at atmospheric pressure and temperature. The propagation characteristics of the turbulent premixed flame including the variation in the flame propagation speed and turbulent burning velocity of the syngas/air mixture turbulent premixed flame were evaluated. In addition, the effect of the self-acceleration characteristics of the turbulent premixed flame was also evaluated. The results show that turbulence gradually changes the radius of the premixed flame from linear growth to nonlinear growth. With the increase of turbulence intensity, the formation of a cellular structure of the flame front accelerated, increasing the flame propagation speed and burning speed. In the transition stage, the acceleration exponent and fractal excess of the turbulent premixed flame decreased with increasing equivalence ratio and increased with increasing turbulence intensity at an equivalence ratio of 0.6. The acceleration exponent was always greater than 1.5.  相似文献   

15.
利用小型化模拟炉膛开展了零碳燃料氢气对燃气锅炉燃烧过程调控作用实验研究,研究了掺氢比对炉膛内部预混火焰宏观形态、炉膛温度均匀性、炉膛污染物排放规律的影响,并总结了CO及NOx的排放规律。实验结果表明:随着预混当量比增加,纯甲烷火焰长度逐渐缩短;对于20%掺氢火焰,随着预混程度的提高,火焰长度降低明显;不同火焰条件下,炉膛温度只由燃烧功率控制;改变燃烧条件时,处于壁面附近位置的温度变化较为平稳,而靠近火焰处温度变化较大;天然气中掺入氢气,燃烧时可以有效降低未燃CO排放;在相同预混程度下,全局当量比减小导致未燃空气增加,热量被稀释,火焰温度降低,热力型NOx的生成降低;随着掺氢比的增加,燃烧时火焰温度升高,导致热力型NOx排放增加。  相似文献   

16.
《能源学会志》2014,87(4):354-366
In this paper, the analytical study of effects of radiation and non-unity Lewis number on the laminar premixed flames of organic dust clouds has been done. The research is focused on a combustion model for premixed flames and the flame structure is composed of preheat-vaporization, narrow reaction and finally the post-flame zone. The normalized governing equations with help of boundary and matching conditions are solved by perturbation method. The results show that increasing equivalence ratio and decreasing Lewis number are resulted in the increase of flame temperature and burning velocity. For the sake of this model validation, fuel conversion is compared by published experimental data and shows an acceptable agreement.  相似文献   

17.
This study investigates analytically and experimentally the influence of preheat temperature on flame propagation and extinction of premixed methane–air flame in single quartz tubes with inner tube diameters of 3.9, 3, 2 and 1 mm respectively. The effects of preheat temperature, tube diameter, equivalence ratio and mixture flow rate on the flame speed and extinction conditions are determined. The analytical results show that high preheat temperature of the mixture can effectively suppress flame quenching, and the occurrence of stable solution in the slow flame branch extends the flammability limit leading to possible flame propagation in mini channels. Experimental results confirm that the flame speed increases and the flammability limit shifts toward the fuel lean direction either through increasing the preheat temperature or decreasing the mixture flow rate, or both. Decrease of propagating flame speed is observed before the stoichiometric equivalence ratio at high preheat temperatures. The analytical model provides insights into how propagating flame in mini channels can be sustained; however, the model is only good at predicting flame speed near the fuel lean branch. Influence of Cu2+ ions exchanged zeolite 13X catalyst on flame speed is also addressed. It is noted that the zeolite based catalyst can lower the preheat temperature requirement in order to sustain the flame propagation in narrow channels.  相似文献   

18.
This paper investigated the effects of hydrogen addition to gasoline surrogates fuel-air mixture on the premixed spherical flame laminar combustion characteristics. The experiments were carried out by high speed Schlieren photography on a constant-volume combustion vessel. Combining with nonlinear fitting technique, the variation of flame propagation speed, laminar burning velocity, Markstein length, flame thickness, thermal expansion coefficient and mass burning flux were studied at various equivalence ratios (0.8–1.4) and hydrogen mixing ratios (0%–50%). The results suggested that the nonlinear fitting method had a better agreement with the experimental data in this paper and the flame propagation was strongly effected by stretch at low equivalence ratios. The stretched propagation speed increased with the increase of hydrogen fraction at the same equivalence ratio. For a given hydrogen fraction, Markstein length decreased with the increase of equivalence ratio; flame propagation speed and laminar burning velocity first increased and then decreased with the increase of equivalence ratio while the peaks of the burning velocity shifted toward the richer side with the increase of hydrogen fraction.  相似文献   

19.
An unconfined strongly swirled flow is investigated to study the effect of hydrogen addition on upstream flame propagation in a methane-air premixed flame using Large Eddy Simulation (LES) with a Thickened Flame (TF) model. A laboratory-scale swirled premixed combustor operated under atmospheric conditions for which experimental data for validation is available has been chosen for the numerical study. In the LES-TF approach, the flame front is resolved on the computational grid through artificial thickening and the individual species transport equations are directly solved with the reaction rates specified using Arrhenius chemistry. Good agreement is found when comparing predictions with the published experimental data including the predicted RMS fluctuations. Also, the results show that the initiation of upstream flame propagation is associated with balanced maintained between hydrodynamics and reaction. This process is associated with the upstream propagation of the center recirculation bubble, which pushes the flame front in the upstream mixing tube. Once the upstream movement of the flame front is initiated, the hydrogen-enriched mixture exhibits more unstable behavior; while in contrast, the CH4 flame shows stable behavior.  相似文献   

20.
The issue of spontaneous ignition of highly pressurized hydrogen release is of important safety concern, e.g. in the assessment of risk and design of safety measures. This paper reports on recent numerical investigation of this phenomenon through releases via a length of tube. This mimics a potential accidental scenario involving release through instrument line. The implicit large eddy simulation (ILES) approach was used with the 5th-order weighted essentially non-oscillatory (WENO) scheme. A mixture-averaged multi-component approach was used for accurate calculation of molecular transport. The thin flame was resolved with fine grid resolution and the autoignition and combustion chemistry were accounted for using a 21-step kinetic scheme.The numerical study revealed that the finite rupture process of the initial pressure boundary plays an important role in the spontaneous ignition. The rupture process induces significant turbulent mixing at the contact region via shock reflections and interactions. The predicted leading shock velocity inside the tube increases during the early stages of the release and then stabilizes at a nearly constant value which is higher than that predicted by one-dimensional analysis. The air behind the leading shock is shock-heated and mixes with the released hydrogen in the contact region. Ignition is firstly initiated inside the tube and then a partially premixed flame is developed. Significant amount of shock-heated air and well developed partially premixed flames are two major factors providing potential energy to overcome the strong under-expansion and flow divergence following spouting from the tube.Parametric studies were also conducted to investigate the effect of rupture time, release pressure, tube length and diameter on the likelihood of spontaneous ignition. It was found that a slower rupture time and a lower release pressure will lead to increases in ignition delay time and hence reduces the likelihood of spontaneous ignition. If the tube length is smaller than a certain value, even though ignition could take place inside the tube, the flame is unlikely to be sufficiently strong to overcome under-expansion and flow divergence after spouting from the tube and hence is likely to be quenched.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号