首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In an effort to understand the oxidation chemistry of new generation biofuels, oxidation of a pentanol isomer (2-methyl-1-butanol) was investigated experimentally in a jet-stirred reactor (JSR) at a pressure of 10 atm, equivalence ratios of 0.5, 1, 2 and 4 and in a temperature range of 700–1200 K. Concentration profiles of the stable species were measured using GC and FTIR. A detailed chemical kinetic mechanism including oxidation of various hydrocarbon and oxygenated fuels was extended to include the oxidation chemistry of 2-methyl-1-butanol, the resulting mechanism was used to simulate the present experiments. In addition to the present data, recent experimental data such as ignition delay times measured in a shock tube and laminar flame speeds were also simulated with this mechanism and satisfactory results were obtained. Reaction path and sensitivity analyses were performed in order to interpret the results.  相似文献   

2.
The experimental study of the oxidation of a blend containing n-decane and a large unsaturated ester, methyl oleate, was performed in a jet-stirred reactor over a wide range of temperature covering both low and high temperature regions (550-1100 K), at a residence time of 1.5 s, at quasi atmospheric pressure with high dilution in helium (n-decane and methyl oleate inlet mole fractions of 1.48 × 10−3 and 5.2 × 10−4) and under stoichiometric conditions.The formation of numerous reaction products was observed. At low and intermediate temperatures, the oxidation of the blend led to the formation of species containing oxygen atoms like cyclic ethers, aldehydes and ketones deriving from n-decane and methyl oleate. At higher temperature, these species were not formed anymore and the presence of unsaturated species was observed. Because of the presence of the double bond in the middle of the alkyl chain of methyl oleate, the formation of some specific products was observed. These species are dienes and esters with two double bonds produced from the decomposition paths of methyl oleate and some species obtained from the addition of H-atoms, OH and HO2 radicals to the double bond.Experimental results were compared with former results of the oxidation of a blend of n-decane and methyl palmitate performed under similar conditions. This comparison allowed highlighting the similarities and the differences in the reactivity and in the distribution of the reaction products for the oxidation of large saturated and unsaturated esters.  相似文献   

3.
The main objectives of this research consist in achieving both experimental and numerical studies of the combustion and oxidation of ethanol. Experimental mole fraction profiles of chemical species (stable, radical, and intermediates) were measured in three C2H5OH/O2/Ar flat premixed flames stabilized at low pressure (50 mbar) and with equivalence ratios equal to 0.75, 1, and 1.25, respectively. The experimental setup used to determine the structure of one-dimensional laminar premixed flames consists of a molecular beam mass spectrometer system (MBMS) combined with electron impact ionization (EI). The oxidation of ethanol was also experimentally studied using a fused silica jet-stirred reactor (JSR). Experiments were performed in the temperature range 890–1250 K, at 1 atm, at four equivalence ratios equal to 0.25, 0.5, 1, and 2 and with an initial fuel concentration of 2000 ppm.A kinetic study was conducted in order to simulate all experimental data measured. It enabled building a kinetic mechanism by thoroughly reviewing the available literature and by taking into account specificities of the two kinds of experiments performed. Validity of the mechanism was also checked against experimental results previously published (ethanol oxidation in a JSR at 10 atm, ignition in a shock tube, combustion in premixed, partially-premixed, and non-premixed flames). This mechanism ensures a reasonably good modelling of the combustion and oxidation of ethanol over the wide range of experimental conditions investigated.  相似文献   

4.
The ignition and oxidation of oxetane have been studied in a single-pulse shock tube under reflected shock wave conditions and also in a jet-stirred reactor (JSR). These experiments cover a wide range of conditions: 1–10 atm, 0.5 ≤ φ ≤ 2.0, 800–1780 K. The ignition delays of oxetane measured in a shock tube have been used to propose an overall dependence of ignition delay time on the concentrations of each component in the gas as: τ = 10−13.5 exp(13389/T5)[C3H6O]−0.36[O2]−0.59[Ar]0.088 (units: seconds, moles per cubic decimeters, and Kelvin). Concentration profiles of the reactants, intermediates, and products of the oxidation of oxetane were measured in a JSR. A numerical model, consisting of a detailed kinetic reaction mechanism with 423 reactions (most of them reversible) of 63 species describes the ignition of oxetane in reflected shock waves and its oxidation in a jet-stirred reactor. Fairly good agreement between the observations and the model was obtained. The major reaction paths have been identified through detailed kinetic modeling.  相似文献   

5.
Methyl propanoate (MP) pyrolysis in a laminar flow reactor was studied at low pressure (30 Torr) within the temperature range from 1000 to 1500 K. About 30 products were detected and identified in the pyrolysis process using the photoionization mass spectrometry, including H2, CO, CO2, CH3OH, CH2O, CH2CO, C1 to C4 hydrocarbons and radicals (such as CH3, C2H5 and C3H3). Their mole fraction profiles versus temperature were also measured. For the unimolecular dissociation reactions, the rate constants were calculated by high precision theoretical calculations. Based on the theoretical calculations and measured mole fraction profiles of pyrolysis species, a kinetic model of MP pyrolysis containing 98 species and 493 reactions was developed. The model simulates the primary decomposition process well with the calculated rate constants. According to the rate of production analysis, the decomposition pathways of MP and the formation channels of both oxygenated and hydrocarbon products were discussed. It is concluded that the main decomposition pathway is MP → CH2COOCH3 → CH3CO + CH2O → CO.  相似文献   

6.
For modeling the combustion of aviation fuels, consisting of very complex hydrocarbon mixtures, it is often necessary to use less complex surrogate mixtures. The various surrogates used to represent kerosene and the available kinetic data for the ignition, oxidation, and combustion of kerosene and surrogate mixtures are reviewed. Recent achievements in chemical kinetic modeling of kerosene combustion using model-fuels of variable complexity are also presented.  相似文献   

7.
The oxidation of para-xylene was studied in a jet-stirred reactor at atmospheric pressure under dilute conditions. New experimental results were obtained over the high-temperature range 900-1300 K, and variable equivalence ratios (0.5?Φ?1.5). They consisted of concentration profiles of the reactants, stable intermediates, and final products, measured by sonic probe sampling followed by on-line GC-MS and off-line GC-TCD-FID and GC-MS analyses. The oxidation of para-xylene under these conditions was modeled using a detailed chemical kinetic reaction mechanism (160 species and 1175 reactions, most of them reversible) deriving from a previous scheme proposed for the ignition, oxidation, and combustion of simple aromatics (benzene, toluene, styrene, n-propylbenzene). The proposed kinetic scheme was also successfully tested against the ignition delays of p-xylene-oxygen-argon mixtures, and the combustion of p-xylene in a low-pressure methane-oxygen-nitrogen flame doped with p-xylene, confirming its validity. Sensitivity analyses and reaction path analyses, based on rates of reaction, were used to interpret the results.  相似文献   

8.
9.
The pyrolysis of n-decane was investigated in a flow reactor at 5, 30, 150 and 760 Torr, and the oxidation of n-decane at equivalence ratios of 0.7, 1.0 and 1.8 was studied in laminar premixed flames at 30 Torr. In both experiments, synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used to identify combustion species and measure their mole fraction profiles. A new detailed kinetic model of n-decane with 234 species and 1452 reactions was developed for applications in intermediate and high temperature regions, and was validated against the experimental results in the present work. The model was also validated against previous experimental data on n-decane combustion, including species profiles in pyrolysis and oxidation in high pressure shock tube and atmospheric pressure flow reactor, jet stirred reactor oxidation, atmospheric pressure laminar premixed flame, counterflow diffusion flame and global combustion parameters such as laminar flame speeds and ignition delay times. In general, the performance of the present model in reproducing these experimental data is reasonably good. Sensitivity analysis and rate of production analysis were conducted to understand the decomposition processes of n-decane.  相似文献   

10.
The reactions and kinetics of ethyl methyl sulfide (CH3CH2SCH3, abbreviation CCSC), a simulant for the chemical warfare agent sulfur mustard, were studied at temperatures of 630–740 °C, under highly diluted pyrolysis and oxidation conditions at one atmosphere in a turbulent flow reactor. The loss of the ethyl methyl sulfide and the formation of intermediates and products were correlated with time and temperature. Destruction efficiencies of 50% and 99% were observed for pyrolysis and oxidation, respectively, at 740 °C with a residence time of 0.06 s. For pyrolysis, ethylene, ethane, and methane were detected at significant levels. In addition to these species, carbon monoxide, carbon dioxide, sulfur dioxide, and formaldehyde were detected for oxidation. Conversions of ethyl methyl sulfide were observed to be significantly slower than observed previously for diethyl sulfide; explanations for this observation are postulated, based on: (1) lower hydrogen abstraction rates or on (2) lower hydrogen atom production as a result of thermal decomposition pathways. Initial decomposition reactions and production pathways for important species observed in the experiments are discussed on a basis of thermochemistry.  相似文献   

11.
The oxidation of C2HCl3 with industrial grade CH4 has been studied in a laboratory-scale flow reactor under fuel-rich, stoichiometric, and fuel-lean conditions from 575 to 850 °C, with an average gas residence time of 0.3-1.5 s. The major products, C2Cl2, C2H4, CO, CO2, and HCl, were found at lower temperatures with high [O2]. The minor intermediates included C2H3Cl, C2HCl, CH3Cl, COCl2, trans-CHClCHCl, cis-CHClCHCl, trans-ClHCCClCH3, C6H6, C3s, C4s, Cl2, and other C6 compounds. Writing −d[C2HCl3]/dt=k[C2HCl3]; global values of k (s−1) were found to be , , and , respectively, for fuel-lean, stoichiometric, and fuel-rich conditions. Modeling with a detailed mechanism involving 149 species and 795 elementary reactions revealed that C2HCl3 mainly disappears via C2HCl3→C2Cl2+HCl. Sensitivity analyses were performed to rank the significance of every reaction in the mechanism. Agreement between modeling and experiment was satisfactory for most major species.  相似文献   

12.
《Combustion and Flame》2013,160(9):1541-1549
n-Butanal is a key stable intermediate during the combustion of n-butanol, and as such strongly affects its chemical kinetics. In this study, ignition delay times of n-butanal/oxygen diluted with argon were measured behind reflected shock waves in the temperature range of 1100–1650 K, at pressures of 1.3, 5 and 10 atm, and equivalence ratios of 0.5, 1.0 and 2.0. An n-butanal sub-model was developed on the basis of literature review, and exhibits fairly good agreement with the experimental results under all test conditions. Reaction pathway and sensitivity analysis were conducted to gain an insight into the controlling reaction pathways and reaction steps.  相似文献   

13.
The aim of this paper is to analyze and discuss the kinetics of the pyrolysis and combustion of naphthenes. The primary propagation reactions of cyclohexane and methylcyclohexane are presented to extend the validity of a semi-detailed kinetic model for the pyrolysis and oxidation of hydrocarbons. Naphthenes are relevant species as reference components in liquid fuels and surrogate blends. A lumped approach is used to reduce the complexity of the overall scheme in terms of species and reactions. Particular attention is devoted to the role of the isomerization or internal abstraction of H atoms in competition with β−decomposition ones. Primary oxidation and decomposition reactions of the cyclohexyl radical are discussed to explain and justify this lumping procedure. The modeling predictions are compared with different sets of measurements. The validation of the low temperature oxidation mechanism of cyclohexane is based on the ignition delay times obtained both in the rapid compression machine at Lille and in closed vessels. Jet-stirred reactors at different pressures and stoichiometric ratios also confirm the reliability of the overall mechanism of oxidation. The comparisons between the model’s predictions and the measurements relating to the pyrolysis and oxidation of methylcyclohexane in the Princeton turbulent flow reactor further support this extension of the kinetic scheme to naphthenes. Finally, the agreement with the oxidation experiments using mixtures of toluene + methylcyclohexane is a primary and simple example of the model’s ability to deal with the combustion of real fuels or surrogate blends.  相似文献   

14.
Recently, species time histories have been measured during n-heptane oxidation behind reflected shock waves [D.F. Davidson, Z. Hong, G.L. Pilla, A. Farooq, R.D. Cook, R.K. Hanson, Combust. Flame 157 (2010) 1899–1905]. The highly precise nature of these measurements is expected to impose critical constraints on chemical kinetic models of hydrocarbon combustion. In this paper, we apply the Method of Uncertainty Analysis using Polynomial Chaos Expansions (MUM-PCE) [D.A. Sheen, X. You, H. Wang, T. Løvås, Proc. Combust. Inst. 32 (2009) 535–542] to demonstrate how the multispecies measurement may be utilized beyond simple model validation. The results show that while an as-compiled, prior reaction model of n-alkane combustion can be accurate in its prediction of the detailed species profiles, the kinetic parameter uncertainty in the model remains to be too large to obtain a precise prediction of the data. Constraining the prior model against the species time histories within the measurement uncertainties led to notable improvements in the precision of model predictions against the species data as well as the global combustion properties considered. Lastly, we show that while the capability of the multispecies measurement presents a step-change in our precise knowledge of the chemical processes in hydrocarbon combustion, accurate data of global combustion properties are still necessary to predict fuel combustion.  相似文献   

15.
This study examines the effect of unsaturation on the combustion of fatty acid methyl esters (FAME). New experimental results were obtained for the oxidation of methyl (E)-2-butenoate (MC, unsaturated C4 FAME) and methyl butanoate (MB, saturated C4 FAME) in a jet-stirred reactor (JSR) at atmospheric pressure under dilute conditions over the temperature range 850-1400 K, and two equivalence ratios (Φ=0.375,0.75) with a residence time of 0.07 s. The results consist of concentration profiles of the reactants, stable intermediates, and final products, measured by probe sampling followed by on-line and off-line gas chromatography analyses. The oxidation of MC and MB in the JSR and under counterflow diffusion flame conditions was modeled using a new detailed chemical kinetic reaction mechanism (301 species and 1516 reactions) derived from previous schemes proposed in the literature. The laminar counterflow flame and JSR (for ?=1.13) experimental results used were from a previous study on the comparison of the combustion of both compounds. Sensitivity analyses and reaction path analyses, based on rates of reaction, were used to interpret the results. The data and the model show that MC has reaction pathways analogous to that of MB under the present conditions. The model of MC oxidation provides a better understanding of the effect of the ester function on combustion, and the effect of unsaturation on the combustion of fatty acid methyl ester compounds typically found in biodiesel.  相似文献   

16.
The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.  相似文献   

17.
The oxidation of n-decane/oxygen/nitrogen is studied at stoichiometric conditions of 1000 ppm fuel in the Princeton variable pressure flow reactor at temperatures of 520–830 K and pressures of 8 and 12.5 atm. The overall oxidative reactivity of n-decane is observed in detail to show low temperature, negative temperature coefficient (NTC) and hot ignition regimes. Detailed temporal speciation studies are performed at reactor initial temperatures of 533 K and 740 K at 12.5 atm pressure and 830 K at 8 atm pressure. Significant amounts of large olefins are produced at 830 K, at conditions of transition from NTC to hot ignition behavior. The predictions using available chemical kinetic models for n-decane oxidation are compared against each other and the experiments. Only the kinetic models of Westbrook et al., Ranzi et al., and Biet et al. capture the NTC behavior exhibited by n-decane. However, each of these models yields varying disparities in the mechanistic predictions of major intermediate species, including ethylene and formaldehyde. Analyses of the Westbrook et al. model are compared with the new data. The predicted double-peaked species yield of ethylene, a behavior not found for the other models or in the experimental observations results from deficiencies in the C2 chemistry. Mechanistic validation information about fuel oxidation chemistry is also provided by the measurement of various larger carbon number alkene isomers at 830 K and 8 atm. The modeling analysis suggests that in addition to n-alkyl beta-scission chemistry, alkyl peroxy radical chemistry contributes significantly to the formation of these alkenes. Specific reaction pathways and rate constants which affect the computation of these observations are discussed.  相似文献   

18.
Propene is a significant component of Liquefied Petroleum Gas (LPG) and an intermediate in the combustion of higher order hydrocarbons. To better understand the combustion characteristics of propene, this study and its companion paper present new experimental data from jet-stirred (JSR) and flow reactors (Part I) and ignition delay time and flame speed experiments (Part II).  相似文献   

19.
20.
The pyrolysis and oxidation of all four butanols (n-, sec-, iso- and tert-) have been studied at pressures from 1 to 4 atm and temperatures of 1000–1800 K behind reflected shock waves. Gas chromatographic sampling at different reaction times varying from 1.5 to 3.1 ms was used to measure reactant, intermediate and product species profiles in a single-pulse shock tube. In addition, ignition delays were determined at an average reflected shock pressure of 3.5 atm at temperatures from 1250 to 1800 K. A detailed chemical kinetic model consisting of 1892 reactions involving 284 species was constructed and tested against species profiles and ignition delays. The little-known chemistry of enols is included in this work to explain the temperature dependence of acetaldehyde produced in the thermal decomposition of isobutanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号