首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autoignition of binary fuel blends of n-heptane and C7 esters, i.e., n-heptane/methyl hexanoate blend and n-heptane/methyl 3-hexenoate blend, was studied in a modified CFR engine at an equivalence ratio of 0.25 and an intake temperature of 155 °C. Heat release analyses showed that the n-heptane/methyl hexanoate blend exhibits stronger cool flame response than the n-heptane/methyl 3-hexenoate blend within the test range of this study, suggesting that methyl 3-hexenoate is less reactive than methyl hexanoate at low temperatures due to the presence of a double bond in the aliphatic chain. Based on quantitative product analyses, major oxidation pathways of methyl 3-hexenoate and of methyl hexanoate were identified. Consistent with the existing literature, at low to intermediate temperatures, methyl hexanoate was observed to undergo paraffinic low temperature oxidation pathways with the ester functional group remaining largely intact, while methyl 3-hexenoate exhibits olefinic oxidation characteristics. Moreover, it was observed that a key feature in the oxidation of methyl 3-hexenoate is the attack of radical species to the double bond in its aliphatic chain, resulting in the formation of unsaturated esters, an epoxy ester, and an aldehyde.  相似文献   

2.
Autoignition of two biodiesel surrogates, methyl heptanoate and ethyl hexanoate, was studied in a motored CFR engine at an equivalence ratio of 0.25 and an intake temperature of 155 °C. The engine compression ratio was gradually increased from the lowest point (4.43) to the point where significant high temperature heat release (HTHR) occurred. Within the test range of this work, both of the two esters exhibited evident cool flame behavior. At the same compression ratio, methyl heptanoate was observed to have both an earlier onset and a higher magnitude of low temperature heat release (LTHR) than ethyl hexanoate, indicating that methyl heptanoate is more reactive in the low temperature region than ethyl hexanoate. GC–MS analyses of the reaction intermediates from the oxidation of the two esters showed that the alkyl chain of fatty acid esters experiences the typical paraffin-like low temperature oxidation sequence. Based on the observations from GC–MS analyses, major low temperature oxidation pathways of ethyl hexanoate are proposed in this work. Also, it is observed that the abstraction of H-atoms on the α-carbon of the ester carbonyl group plays an important role in the oxidation of fatty acid esters. In addition, the identification of hexanoic acid among the reaction intermediates from low temperature oxidation of ethyl hexanaoate together with the observation of more fuel carbon being converted to C2H4 during ethyl hexanoate oxidation than during methyl heptanoate oxidation provide evidence for the existence of the six-centered unimolecular elimination reaction during low temperature oxidation of ethyl esters.  相似文献   

3.
The experimental study of the oxidation of a blend containing n-decane and a large unsaturated ester, methyl oleate, was performed in a jet-stirred reactor over a wide range of temperature covering both low and high temperature regions (550-1100 K), at a residence time of 1.5 s, at quasi atmospheric pressure with high dilution in helium (n-decane and methyl oleate inlet mole fractions of 1.48 × 10−3 and 5.2 × 10−4) and under stoichiometric conditions.The formation of numerous reaction products was observed. At low and intermediate temperatures, the oxidation of the blend led to the formation of species containing oxygen atoms like cyclic ethers, aldehydes and ketones deriving from n-decane and methyl oleate. At higher temperature, these species were not formed anymore and the presence of unsaturated species was observed. Because of the presence of the double bond in the middle of the alkyl chain of methyl oleate, the formation of some specific products was observed. These species are dienes and esters with two double bonds produced from the decomposition paths of methyl oleate and some species obtained from the addition of H-atoms, OH and HO2 radicals to the double bond.Experimental results were compared with former results of the oxidation of a blend of n-decane and methyl palmitate performed under similar conditions. This comparison allowed highlighting the similarities and the differences in the reactivity and in the distribution of the reaction products for the oxidation of large saturated and unsaturated esters.  相似文献   

4.
A very high temperature fuel-air mixture is necessary for the thermal partial oxidation process of hydrocarbon fuels in order to have a high reaction temperature which accelerate the reaction kinetics. For Diesel fuel and due to the ignition delay time behavior, different oxidation behavior can be realized at different preheating temperatures. In this work, the intermediate oxidation region of Diesel fuel is investigated. By making use of the ignition delay time behavior, an vaporizer like tube reactor is constructed in order to enable a very high preheating temperature without the risk of self-ignition in a time-independent experiment. The oxidation behavior of Diesel fuel in air is investigated numerically and experimentally. In the numerical part, the ignition delay time was estimated using CHEMIKIN tools for different air-fuel mixtures at different temperatures. The evaporation behavior of the Diesel fuel-air mixtures are investigated at relatively high air preheating temperatures ranging from 500 °C up to 680 °C. The amount of the process air was varied from an air ratio λ = 0.35 to λ = 0.6. The experiments are also performed with N2 as an evaporation media and compared with those performed with air to detect any temperature increase in the case of Diesel-air mixtures. The amount of heat release in the low chemistry region as well as in the intermediate region is calculated for the case of Diesel/air mixtures.The experiments show that four different oxidation region of Diesel fuel can be distinguished depending on air inlet temperatures and on the air ratio. At a temperature lower than 723 K (450 °C), no chemical reaction takes place. The cool flame reactions start at temperatures above 723 K (450 °C). However, no stable cool flame can be achieved unless the air preheating temperature reached about 753 K (480 °C). The cool flame region is extended up to about 873 K (600 °C), at which the intermediate regime started. This regime stabilized to a short range up to about 923 K (650 °C) after which ignition takes place.  相似文献   

5.
Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet-stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.  相似文献   

6.
This study examines intermediate temperature heat release (ITHR) in homogeneous charge compression ignition (HCCI) engines using blends of ethanol and n-heptane. Experiments were performed over the range of 0–50% n-heptane liquid volume fractions, at equivalence ratios 0.4 and 0.5, and intake pressures from 1.4 bar to 2.2 bar. ITHR was induced in the mixtures containing predominantly ethanol through the addition of small amounts of n-heptane. After a critical threshold, additional n-heptane content yielded low temperature heat release (LTHR). A method for quantifying the amount of heat released during ITHR was developed by examining the second derivative of heat release, and this method was then used to identify trends in the engine data. The combustion process inside the engine was modeled using a single-zone HCCI model, and good qualitative agreement of pre-ignition pressure rise and heat release rate was found between experimental and modeling results using a detailed n-heptane/ethanol chemical kinetic model. The simulation results were used to identify the dominant reaction pathways contributing to ITHR, as well as to verify the chemical basis behind the quantification of the amount of ITHR in the experimental analysis. The dominant reaction pathways contributing to ITHR were found to be H-atom abstraction from n-heptane by OH and the addition of fuel radicals to O2.  相似文献   

7.
Several research works have been carried out on biodiesel combustion, performance and emissions till today. But very few studies have been made about the chemistry of biodiesel that affects the diesel engine operation. Biodiesel is derived from vegetable oil or animal fats, which comprises of several fatty acids with different chain length and bonding. The present work focuses on the effect of biodiesel molecular weight, structure (Cis & Trans), and the number of double bonds on the diesel engine operation characteristics. Three types of biodiesel with different molecular weight and number of double bond were selected for the experimental studies. The biodiesels were prepared and analyzed for fuel properties according to the standards. A constant speed diesel engine, which develops 4.4 kW of power, was run with biodiesels and its performance was compared with diesel fuel. The results show that Linseed oil methyl ester with high linolenic (unsaturated fatty acid ester) does not suit best for diesel engine due to high oxides of nitrogen emission and low thermal efficiency.  相似文献   

8.
Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate   总被引:5,自引:0,他引:5  
A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran and co-workers for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet-stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.  相似文献   

9.
The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.  相似文献   

10.
生物柴油是一种可再生的国产绿色替代能源,来自于植物油单酯衍生物。脂肪酸酯作为发动机燃料的可行性来自于其分子结构和较高的能量密度。燃料的热值主要取决于燃料中C、H、O等元素的质量分数。作为柴油的品质参数之一,十六烷值同样适用于替代燃料生物柴油。脂肪酸链中的不饱和键是导致CN下降的最重要因素。不饱和键的数目及位置对燃料特性参数CN、IV、低温流动性和氧化安定性等都具有重要的影响。  相似文献   

11.
Alkylated aromatic hydrocarbons, including the methylbenzenes, are a major and growing component of liquid transportation fuels. Reactivity (or lack thereof) for the methylbenzenes in combustion systems, measured by octane rating, ignition delay, and laminar flame speed, varies widely with the number and position of methyl substituents. At present this behaviour is not fully understood. This study demonstrates how the low temperature and ignition reactivity of methylbenzenes is controlled by the presence of isolated methyl groups and adjacent methyl pairs (the ortho effect); this allows for the development of octane number correlations. Introduction of an isolated methyl group, adjacent only to CH ring sites, consistently increases the research octane number (RON) by around 26. This phenomenon is explained by the formation of relatively unreactive benzyl free radicals. When an adjacent pair of methyl substituents is present the RON consistently decreases by between 8 and 26, compared to the case when these methyl groups are isolated from each other (this effect generally diminishes with increasing degree of substitution). Research octane numbers for all aromatics with zero to three methyl substituents are accurately described by the empirical relationship RON = 98 + 24.2nm − 25.8np, where nm is the total number of methyl groups and np is the number of contiguous adjacent methyl pairs. The ortho effect is attributed to the unique oxidation chemistry of o-methylbenzyl, o-methylbenzoxyl, and o-methylphenyl type radicals here we provide a preliminary exploration of this chemistry and highlight areas requiring further research. It is shown that the o-methylbenzyl radical can react with two oxygen molecules to form 1,2-diformylbenzene + 2OH + H, a highly chain-branching process. This chemistry is expected to largely explain the two-stage ignition and negative temperature coefficient (NTC) behavior witnessed for polymethylbenzenes with adjacent methyl pairs. Similar chain branching mechanisms exist in the oxidation of o-methylbenzoxyl radicals that also form during o-xylene ignition.  相似文献   

12.
The experimental study of the oxidation of two blend surrogates for diesel and biodiesel fuels, n-decane/n-hexadecane and n-decane/methyl palmitate (74/26 mol/mol), has been performed in a jet-stirred reactor over a wide range of temperatures covering both low, and high-temperature regions (550-1100 K), at a residence time of 1.5 s, at quasi atmospheric pressure with high dilution in helium (hydrocarbon inlet mole fraction of 0.002) and at stoichiometric conditions.Numerous reaction products have been identified and quantified. At low and intermediate temperatures (less than 1000 K), the formation of oxygenated species such as cyclic ethers, aldehydes and ketones has been observed for n-decane, n-hexadecane, and methyl palmitate. At higher temperature, the formation of these species was not observed any more, and small amounts of unsaturated species (olefins and unsaturated methyl esters) have been detected.Results obtained with methyl palmitate and n-hexadecane have been compared in order to highlight similarities and differences between large n-alkanes and methyl esters.  相似文献   

13.
The subject of this paper is a series of experiments conducted on a single-cylinder research engine investigating the influence of molecular structure on the combustion behaviour of fatty acid alcohol ester (biodiesel) molecules under diesel engine conditions. The fuels employed in these experiments comprised various samples of pure individual fatty acid alcohol ester molecules of different structure, as well as several mixtures of such molecules. The latter consisted in biodiesel fuels produced by the transesterification of naturally occurring plant oils or animal fat with a monohydric alcohol. It was observed that the molecular structure of the fuel significantly influenced the formation of NOx and particulate matter and their respective concentration in the exhaust gas. The influence on the formation of NOx in particular, appeared to be exerted first through the effect which the molecular structure had on the auto-ignition delay occurring after the fuel was injected into the combustion chamber, and second through the flame temperature at which the various molecules burned. The emission of particulates on the other hand showed correlation with the number of double bonds in the fuel molecules for the case of larger accumulation mode particles, and with the boiling point of the fuel samples for the case of the smaller, nucleation mode particles. The effect of ignition delay on the exhaust emissions of these pollutants was isolated by adding the ignition promoting molecule 2-ethylhexyl nitrate to some of the fuel samples in closely specified concentrations, so as to equalise the ignition delay for the relevant fuel samples. The removal of the ignition delay as a main influence on the combustion process enabled the observation of the lesser effects of adiabatic flame temperature.  相似文献   

14.
分析了生物柴油的燃料特性及脂肪酸组成结构,结合发动机燃烧生物柴油的试验,分析了燃料的十六烷值、密度、运动黏度、氧化安定性、不饱和双键的数量和位置等因素对NO_x排放的影响;运用FIRE软件分别模拟了生物柴油与柴油燃烧时的温度场、氧浓度场、黏度场以及十六烷值对滞燃期的影响规律。结果表明:生物燃料较低的十六烷值、较大的密度和运动黏度、较差的氧化安定性、存在双键且双键位置偏向脂肪链中间等,均会导致生物柴油NO_x排放升高。提出了降低NO_x排放的方法。  相似文献   

15.
The effect of non-equilibrium plasma activated low temperature chemistry (PA-LTC) on the ignition and extinction of Dimethyl Ether (DME)/O2/He diffusion flames has been investigated experimentally in a counterflow burner with in situ nanosecond pulsed discharge at 72 Torr. A uniform discharge is generated between the burner nozzles by placing porous metal electrodes at the nozzle exits. The ignition and extinction characteristics of DME/O2/He are studied by employing OH and CH2O Planar Laser Induced Fluorescence (PLIF) techniques at constant strain rates and O2 mole fractions on the oxidizer side with varying the DME mole fractions. Contrary to the conventional understanding, strong low temperature reactivity during ignition process is observed for DME with non-equilibrium plasma activation even at 72 Torr and flow residence time of a few milliseconds. The OH PLIF shows strong OH signal at and after ignition, whereas extremely low OH signal before ignition. However, the CH2O PLIF experiments demonstrate that, with the increase of DME mole fraction on the fuel side, the CH2O PLIF signal intensity increases significantly before ignition and decreased rapidly after ignition. The low OH number density and high CH2O number density before DME ignition clearly demonstrates the existence of PA-LTC at low pressure. Moreover, at higher O2 mole fraction and discharge repetition frequency, the in situ discharge significantly modifies the characteristics of ignition and extinction, thus creating a new monotonically and fully stretched ignition S-curve without an extinction limit. Compared to our previous study of methane, the existence of strong low temperature reactivity in DME oxidation makes ignitions occur at much lower fuel mole fractions, thus accelerating the transition of ignition curve from conventional S-curve to the fully stretched S-curve. The transition from the conventional S-curve to the new stretched ignition curve at high plasma repetition rate indicates that the plasma could dramatically change the chemical kinetic pathways of DME oxidation by activating the low temperature chemistry even at low pressure. The chemical kinetic model for the plasma–flame interaction has been also developed based on the assumption of constant electric field strength in the bulk plasma region. Both experiments and modeling results reveal that the PA-LTC has a much shorter timescale comparing with that of thermally activated low temperature chemistry owing to the rapid radical production by plasma. The reaction pathways analysis shows that atomic O generated by the discharge is critical to controlling the population of radical pool.  相似文献   

16.
17.
The effects of the inert components of exhaust gas recirculation (EGR) gas on reducing the pressure rise rate of homogeneous charge compression ignition engine combustion were investigated numerically by utilizing the CHEMKIN II package and its SENKIN code, as well as Curran’s dimethyl ether reaction scheme. Calculations were conducted under constant volume combustion and engine combustion (one compression and one expansion only, respectively) conditions. Results show that with constant fuel amount and initial temperature and pressure, as EGR ratio increases, combustion timings are retarded and the duration of thermal ignition preparation extends non-linearly; peak values of pressure, pressure rising rate (PRR), and temperature decrease; and peak values of heat release rate in both low temperature heat release (LTHR) and high temperature heat release decrease. Moreover, maximum PRR decreases as CA50 is retarded. With constant fuel amount, mixtures with different EGR ratios can obtain the same CA50 by adjusting the initial temperature. Under the same CA50, as EGR ratio increases, the LTHR timing is advanced and the duration of thermal ignition preparation is extended. Maximum PRR is almost constant with the fixed CA50 despite the change in EGR ratio, indicating that the influence of EGR dilution on chemical reaction rate is offset by other factors. Further investigation on the mechanism of this phenomenon is needed.  相似文献   

18.
Two sets of experiments were conducted to investigate the effects of adding gaseous hydrogen to the intake of compression–ignition (CI) engines fueled with 20% bio-derived/80% petroleum-derived diesel fuel (B20). A 1.3 L, 53 kW CI engine coupled to an eddy-current engine dynamometer was tested first. Data were collected on engine operating parameters, fuel consumption, concentration of total oxides of nitrogen (NOx) in the exhaust, and exhaust temperature. Eight steady-state operating points were tested with hydrogen flow rates equivalent to 0%, 5%, and 10% of the total fuel energy. In a second set of experiments, the stock gasoline engine of a 2005 Chevrolet Equinox was replaced with a 1.3 L, 66 kW CI engine, and urban drive cycles were run on a chassis dynamometer. The drive cycles were repeated with 0%, 5% and 10% of the fuel energy coming from the fumigated hydrogen. In both experiments, the addition of hydrogen did not result in discernable differences in engine efficiency. In the vehicle testing, there were no noticeable differences in drivability. There were modest reductions in NOx emissions and increases in exhaust temperature with hydrogen addition. This investigation demonstrates that fumigating relatively small amounts of hydrogen into the intake of a modern diesel engine results in only modest changes in combustion efficiency and emissions with no detrimental effects on vehicle performance or drivability. This strategy can be used to partially offset the use of petroleum-based fuels in light-duty transportation vehicles.  相似文献   

19.
For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn2O4-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16–20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF6 in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at −60 °C using a C/20 discharge rate with cells containing 1.0 M LiPF6 in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF6 in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at −40 °C, while still maintaining a voltage >2.5 V at 100 and 80% state-of-charge (SOC).  相似文献   

20.
The effects of the inert components of exhaust gas recirculation (EGR) gas on reducing the pressure rise rate of homogeneous charge compression ignition engine combustion were investigated numerically by utilizing the CHEMKIN II package and its SENKIN code, as well as Curran’s dimethyl ether reaction scheme. Calculations were conducted under constant volume combustion and engine combustion (one compression and one expansion only, respectively) conditions. Results show that with constant fuel amount and initial temperature and pressure, as EGR ratio increases, combustion timings are retarded and the duration of thermal ignition preparation extends non-linearly; peak values of pressure, pressure rising rate (PRR), and temperature decrease; and peak values of heat release rate in both low temperature heat release (LTHR) and high temperature heat release decrease. Moreover, maximum PRR decreases as CA50 is retarded. With constant fuel amount, mixtures with different EGR ratios can obtain the same CA50 by adjusting the initial temperature. Under the same CA50, as EGR ratio increases, the LTHR timing is advanced and the duration of thermal ignition preparation is extended. Maximum PRR is almost constant with the fixed CA50 despite the change in EGR ratio, indicating that the influence of EGR dilution on chemical reaction rate is offset by other factors. Further investigation on the mechanism of this phenomenon is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号