首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of particle size distribution function (PSDF) of soot in premixed flames of benzene and toluene was studied on a burner stabilized stagnation (BSS) flame platform. The cold gas velocities were changed to hold the maximum flame temperatures of different flames approximately constant. The PSDFs of all the test flames exhibited a bimodal distribution, i.e., a small-size nucleation mode and a large-size accumulation mode. It was observed that soot nucleation and particle growth in the benzene flame were stronger than those in the toluene flame at short residence times. At longer residence times, the PSDFs of the two flames were similar, and the toluene flame showed a larger particle size distribution range and a higher particle volume fraction than the benzene flame.  相似文献   

2.
The effect of soot surface reactivity, in terms of the evolution of sites on the soot particles’ surface available for reaction with gas phase species, is investigated via modeling numerous ethylene/air flames, using a detailed combustion and sectional soot particle dynamics model. A new definition of a particles’ age is introduced. A methodology has been developed to study soot particle surface reactivity. Subsequently, it is investigated if the surface reactivity can be correlated with the particle age. An exponential function giving a smooth transition of surface activity with particle age is employed to model a variety of ethylene/air flames, which differ in fuel stream dilution levels, fuel stream premixing, and burner configurations. Excellent agreement with measured soot volume fractions of a variety of flames, burners, and datasets could be obtained with this approach. The newly developed function based on particle age eliminates the need to fit soot surface growth parameters to each experimental condition. Finally, the applicability and limitation of the new surface reactivity function for use in detailed soot formation models is discussed.  相似文献   

3.
This study explores the criteria for soot inception in oxygen-enriched laminar coflow flames. In these experiments we select an axial height in the coflow flame at which to identify the sooting limit. The sooting limit is obtained by varying the amount of inert until luminous soot first appears at this predefined height. The sooting limit flame temperature is found to increase linearly with stoichiometric mixture fraction, regardless of fuel type. To understand these results, the relationships between flame structure, temperature, and local C/O ratio is explored through the use of conserved scalar relationships. Comparison of these relationships with the experimental data indicates that the local C/O ratio is a controlling parameter for soot inception in diffusion flames (analogous to the global C/O ratio in premixed flames). Analysis of experimental results suggests that soot inception occurs when the local C/O ratio is above a critical value. The values for critical C/O ratios obtained from the analysis of experiments using several fuels are similar in magnitude to the corresponding C/O ratios for premixed flames. In addition, temperatures and PAH fluorescence were measured to identify regions in these flames most conducive to particle inception. Results indicate that the peak PAH concentration lies along a critical iso-C/O contour, which supports a theory that soot particles first appear along this critical contour, given sufficient temperature.  相似文献   

4.
The effect of a nominally uniform electric field on the initially uniform distribution of soot has been assessed for laminar premixed ethylene/air flames from a McKenna burner. An electrophoretic influence on charged soot particles was measured through changes to the deposition rate of soot on the McKenna plug, using laser extinction (LE). Soot volume fraction was measured in situ using laser-induced incandescence (LII). Particle size and morphologies were assessed through ex situ transmission electron microscopy (TEM) using thermophoretic sampling particle diagnostics (TSPD). The results show that the majority of these soot particles are positively charged. The presence of a negatively charged plug was found to decrease the particle residence times in the flame and to influence the formation and oxidation progress. A positively charged plug has the opposite effect. The effect on soot volume fraction, particles size and morphology with electric field strength is also reported. Flame stability was also found to be affected by the presence of the electric field, with the balance of the electrophoretic force and drag force controlling the transition to unstable flame flicker. The presence of charged species generated by the flame was found to reduce the dielectric field strength to one seventh that of air.  相似文献   

5.
利用矩方法研究了层流甲醇/乙烯预混火焰中碳烟颗粒形成的化学反应动力学机理.模型考虑了颗粒的成核、颗粒间的凝结与聚合、气态组分在颗粒表面的生长与氧化过程.整个机理涉及101种组分和543个基元反应.计算了不同甲醇摩尔分数时碳烟粒子体积分数、粒子直径及重要中间组分的摩尔分数,对乙炔和苯的生成/消耗进行了敏感性分析,揭示了甲醇燃烧过程中氧原子的迁移路径.计算结果表明,甲醇能有效地减少碳烟及其前驱体多环芳香烃、多环芳香烃前驱体物质(如乙炔、炔丙基等)的生成量.燃烧过程甲醇中氧原子在甲醇基、甲醛、羟基、甲醛基、一氧化碳和二氧化碳等物质中迁移.  相似文献   

6.
预混合乙烯火焰生成物相对浓度的激光诊断   总被引:1,自引:0,他引:1  
针对4种典型的预混合乙烯火焰,在不同火焰温度及不同当量比下,用激光诱导炽热法(LII)和激光诱导荧光法(LIF),对预混合燃烧过程中产生的碳烟颗粒及其前驱物的相对浓度分布进行了研究,结果表明,高温、缺氧是产生碳烟颗粒前驱物的重要原因,在相同的当量比下,随着火焰温度的升高,碳烟颗粒前驱物的相对浓度明显上升,导致碳烟颗粒物相对浓度也不断升高,碳烟颗粒前驱物的相对浓度随着燃料当量比的升高而显著上升,另外,碳烟颗粒物的相对浓度变化总是与其前驱物的相对浓度变化相一致,与小分子碳烟颗粒前驱物相比较,大分子碳烟颗粒前驱物在预混合火焰中的浓度高,分布范围广.  相似文献   

7.
《Combustion and Flame》2001,124(1-2):275-294
We investigate the effects of the flow-field configuration on the sooting characteristics of normal and inverse coflowing diffusion flames. The numerical model solves the time-dependent, compressible, reactive-flow, Navier-Stokes equations, coupled with submodels for soot formation and thermal radiation transfer. A benchmark calculation is conducted and compared with experimental data, and shows that computed peak temperatures and species concentrations differ from the experimental values by less than 10%, while the computed peak soot volume fraction differs from the experimental values by 10–40%, depending on height. Simulations are conducted for three normal diffusion flames in which the fuel/air velocities (cm/s) are 5/10, 10/10, and 10/5, and for an inverse diffusion flame (where the fuel and air ports have been reversed) with a fuel/air velocity of 10/10. The results show significant differences in the sooting characteristics of normal and inverse diffusion flames. This work supports previous conclusions from the experimental work of others. However, in addition, we use the ability of the simulations to numerically track soot parcels along pathlines to further explain the experimentally observed phenomena. In normal diffusion flames, both the peak soot volume fraction and the total mass of soot generated is several orders of magnitude greater than for inverse diffusion flames with the same fuel and air velocities. In normal diffusion flames, soot forms in the annular region on the fuel-rich side of the flame sheet, while in inverse flames, the soot forms in a fuel-rich region on top of the flame sheet. Surface growth is the dominant soot formation mechanism (compared to nucleation) for both types of flames; however, surface growth rates are much faster for normal diffusion flames compared to inverse flames. Soot oxidation rates are also much faster in normal flames, where the dominant soot-oxidizing species is OH, compared to inverse flames, where the dominant soot-oxidizing species is O2. In the inverse flames, surface growth continues after oxidation has ceased, causing the peak soot volume fraction to be sustained for a long period of time, and causing the emission of soot, even though the quantity of soot is small. Comparison of soot formation among the three normal diffusion flames shows that the peak soot volume fraction and total mass of soot generated increases as the fuel-to-air velocity ratio increases. A larger fuel–air velocity ratio results in a longer residence time from the nucleation to the oxidation stage, allowing for more soot particle growth. When the fuel-to-oxidizer ratio decreases, there is less time for surface growth, and the particles cross the flame sheet (where they are oxidized) earlier, resulting in decreased soot volume fraction.  相似文献   

8.
Axisymmetric co-flowing acetylene/air laminar diffusion flames have been experimentally investigated to study the effect of hydrogen addition on soot formation and soot morphology. An acetylene-hydrogen jet burning in co-flowing air at atmospheric pressure has been studied under different flow arrangements, i.e., premixed and with separate addition of acetylene and hydrogen. Thermophoretic sampling and analysis by transmission electron microscopy are employed for soot diagnostics. Soot microstructure, primary particle size, soot volume fraction, and fractal geometry results are reported. The effect of hydrogen addition on the temperature field is moderate (maximum increase ∼100 K), the effect being greater when hydrogen is premixed with acetylene. Soot volume fraction decreases with hydrogen addition. A shift was noted in the soot volume fraction peak with change in the Reynolds and Froude numbers at the burner exit. The primary soot particle diameter is in the range of 20-35 nm. Soot particles are larger in size close to the burner for the pure acetylene flame. A reverse trend is observed with hydrogen addition. The fractal dimension of the soot aggregates is about 1.7-1.8. It is unaffected by hydrogen addition and location in the flame. Soot aggregate size tends to decrease with hydrogen addition. The results of the present study on the effect of hydrogen addition on soot volume fraction and mean primary particle size are in good correlation with the results of other investigators for ethylene-, propane-, and butane-air flames, which have been described with regard to the HACA mechanism of soot nucleation and growth and enhanced soot oxidation in fuel-rich flames by increased OH radical concentration.  相似文献   

9.
For diffusion flames, the combination of oxygen enrichment and fuel dilution results in an increase in the stoichiometric mixture fraction, Zst, and alters the flame structure, i.e., the relationship between the local temperature and the local gas composition. Increasing Zst has been shown to result in the reduction or even elimination of soot. In the present work, the effects of variable Zst on soot inception are investigated in normal and inverse coflow flames, using ethylene as the fuel. Use of the inverse coflow flame underscores the validity of these concepts, since the convective field in the inverse flame directs particles into the fuel-rich region. Sooting limits based on particle luminosity are measured as a function of Zst. The sooting limit is obtained by varying the amount of inert gas until soot appears above a predefined height. For each limit flame, the adiabatic flame temperature is calculated and the flame temperature at the half-height is measured. The flame temperature at the sooting limit is found to increase with Zst for both normal and inverse flames. The effects of residence time are also investigated, and the sooting limit inception temperature is found to be dependent on fuel stream velocity for both the normal and inverse configurations. A simple model applicable to oxy-fuel combustion is presented which describes how increasing Zst results in the reduction and ultimately elimination of soot. This model assumes that soot inception can only occur in a region where critical values for species, temperature, and residence time are met. The soot inception region is shown to be bounded by two isotherms: a low-temperature boundary that is a function of residence time, and a high-temperature boundary that corresponds to the location of a critical local carbon-to-oxygen ratio. The effect of increasing Zst is to move the boundaries of the soot inception zone towards each other, until the zone is infinitely thin and thus the sooting limit is reached. By comparing the model to experimental data, a critical local C/O ratio of 0.53 and a sooting limit inception temperature of 1640 K (for a characteristic residence time of 22 ms) were determined for ethylene.  相似文献   

10.
The conditions under which soot is formed vary widely and depend upon several factors, including pressure, temperature, fuel type, combustor geometry, and extent of premixing. Although it is known that partially premixed flames (PPFs) can become either more or less sooting than their nonpremixed or premixed counterparts, the impact of partial premixing on soot formation across a large equivalence ratio and flow range is still inadequately understood. Comprehensive experimental data are relatively sparse for this important configuration. Herein, we report on soot formation in various ethylene/air PPFs utilizing full-field light extinction. The dimensionless extinction coefficient Kext is an important calibrated constant for the determination of the soot volume fraction for this measurement technique. We find that a value of Kext=7.1 provides results that are in good agreement with benchmark literature data for a nonpremixed flame. We examined the soot microstructures for two flames established at ?=∞ (i.e., nonpremixed) and 5. In both cases, the primary particles were found to be nearly spherical. In case of the nonpremixed flame the average primary soot particle diameter was ∼35 nm, but for the ?=5 flame it was ∼20 nm. However, the parameter responsible for the value of Kext is the average aggregate size and not that of the primary particles. The aggregate sizes are similar for the two flames. We consider this as verification of a constant Kext value over the entire equivalence ratio range. The addition of air to the fuel stream produces an initial increase in the flame height. Further air addition gradually decreases the flame height, which is followed by a more rapid decrease with larger premixing. Likewise, the peak soot concentration first increases with small amounts of air addition (or partial premixing of the fuel stream) and reaches a maximum value at ?∼24. With further air addition, as ? decreases below a value of 20, the soot volume fraction considerably decreases.  相似文献   

11.
Electrical mobility measurements of the soot particles generated in rich premixed ethylene/air flat flames reveal a characteristic lognormal size distribution that is distinct from the self preserving distribution expected from coagulation dominated aerosol dynamics. The distribution changes to a bimodal form as the equivalence ratio and the height above the burner increase. The soot particles are sampled using a three-stage ejector pump, with an overall dilution of the soot mole fraction by 3000, that quenches the flame chemistry and dilutes the sample for analysis by a nano-differential mobility analyzer. The measured soot volume fraction is in good agreement with optical extinction data, quantitatively reproducing the increases previously noted with respect to increasing equivalence ratio and height above the burner. The trends for mean particle diameter are also reproduced, but the mobility diameters are roughly threefold smaller than their light scattering counterparts. Particle number density is found to increase with height, whereas the optical data exhibit the opposite trend. Residence chamber experiments show that with sufficient time the quenched soot sample evolves from the lognormal shape found in the flame to the expected self preserving distribution.  相似文献   

12.
Soot formation in laminar diffusion flames   总被引:2,自引:0,他引:2  
Laminar, sooting, coflow diffusion flames at atmospheric pressure have been studied experimentally and theoretically as a function of fuel dilution by inert nitrogen. The flames have been investigated with laser diagnostics. Laser extinction has been used to calibrate the experimental soot volume fractions and an improved gating method has been implemented in the laser-induced incandescence (LII) measurements resulting in differences to the soot distributions reported previously. Numerical simulations have been based on a fully coupled solution of the flow conservation equations, gas-phase species conservation equations with complex chemistry, and the dynamical equations for soot spheroid growth. The model also includes the effects of radiation reabsorption through an iterative procedure. An investigation of the computed rates of particle inception, surface growth, and oxidation, along with a residence time analysis, helps to explain the shift in the peak soot volume fraction from the centerline to the wings of the flame as the fuel fraction increases. The shift arises from changes in the relative importance of inception and surface growth combined with a significant increase in the residence time within the annular soot formation field leading to higher soot volume fractions, as the fuel fraction increases.  相似文献   

13.
基于当量比为1.79且最高火焰温度为1 829 K的预混合丙烯火焰,研究了燃料掺混对碳烟生成的影响以及协同效应.分别将5%、20%、40%摩尔分数的甲烷混合到丙烯中,形成具有相同当量比和最高火焰温度的预混火焰.使用微孔探针采样技术和扫描电迁移率粒径谱仪,在燃烧器稳定滞止火焰中测量了碳烟粒径分布.研究发现,掺混甲烷后的火...  相似文献   

14.
Some of the most effective flame inhibitors ever found are metallic compounds. Their effectiveness, however, drops off rapidly with an increase of agent concentration, and varies widely with flame type. Iron pentacarbonyl, for example, can be up to two orders of magnitude more efficient than CF3Br for reducing the burning velocity of premixed laminar flames when added at low volume fraction; nevertheless, it is nearly ineffective for extinction of co-flow diffusion flames. This article outlines previous research into flame inhibition by metal-containing compounds, and for more recent work, focuses on experimental and modeling studies of inhibited premixed, counterflow diffusion, and co-flow diffusion flames by the present authors. The strong flame inhibition by metal compounds when added at low volume fraction is found to occur through the gas-phase catalytic cycles leading to a highly effective radical recombination in the reaction zone. While the reactions of these cycles proceed in some cases at close to collisional rates, the agent effectiveness requires that the inhibiting species and the radicals in the flame overlap, and this can sometimes be limited by gas-phase transport rates. The metal species often lose their effectiveness above a certain volume fraction due to condensation processes. The influence of particle formation on inhibitor effectiveness depends upon the metal species concentration, particle size, residence time for particle formation, local flame temperature, and the drag and thermophoretic forces in the flame.  相似文献   

15.
16.
C.H. Kim  F. Xu 《Combustion and Flame》2008,152(3):301-316
The flame structure and soot particle surface reaction properties, including growth and oxidation, of laminar jet nonpremixed flames were studied experimentally at pressures of 1.0-8.0 atm. Ethylene-helium mixtures were used in an oxygen/helium coflow at normal temperature (300 K) in order to minimize the effects of buoyancy. The following properties along the axis of flames were measured as a function of distance from the burner exit: soot concentrations by laser extinction, soot temperatures by multiline emission, soot structure by thermophoretic sampling and analysis using transmission electron microscopy (TEM), concentrations of major stable gas species by isokinetic sampling and gas chromatography, concentrations of radical species (H, OH, O) by Li/LiOH atomic absorption, and flow velocities by laser velocimetry. The measurements were analyzed to determine local flame properties in order to find soot surface growth and oxidation rates. The measurements of soot surface growth rates (corrected for soot surface oxidation) were found to be consistent with earlier measurements at atmospheric and subatmospheric pressures involving laminar premixed and diffusion flames fueled with a variety of hydrocarbons. The growth rates from all the available flames were in good agreement with each other and with existing hydrogen-abstraction/carbon-addition (HACA) soot surface growth mechanisms available in the literature. Measurements of early soot surface oxidation rates at pressures of 1.0-8.0 atm (corrected for soot surface growth and prior to consumption of 70% of the maximum mass of the primary soot particles) were found to be consistent with earlier measurements at atmospheric and subatmospheric pressures. The oxidation rates of up to 8 atm in flame environment could be explained by reaction with OH, having a collision efficiency of 0.12.  相似文献   

17.
Experimental results are presented on the effect of methane content in a non-aromatic fuel mixture on the formation of aromatic hydrocarbons and soot in various fundamental combustion configurations. The systems considered consist of a laminar flow reactor, a laminar co-flow diffusion flame burner, and a laminar, premixed flame burner, all of which operate at atmospheric pressure. In the flow reactor, the experiments are performed at 1430 K, constant C-atom flow rates, 98% nitrogen dilution, C/O ratio = 2, and with fuel mixtures consisting of ethylene and methane. The diffusion flames are performed with fuel mixtures of methane and ethylene diluted in nitrogen to maintain a constant adiabatic flame temperature. The premixed flame experiments are performed with n-heptane and methane mixtures at a C/O ratio = 0.67 with nitrogen-impoverished air. The results show the existence of synergistic chemical effects between methane and other alkanes in the production of aromatics, despite reduced acetylene concentrations. This effect is attributable to the ability of methane to enhance the production of methyl radicals that will then promote production channels of aromatics that rely on odd-carbon-numbered species. Benzene, naphthalene, and pyrene show the strongest sensitivity to the presence of added methane. This synergy on aromatics trickles down to soot via enhanced inception and surface growth rates by polycyclic aromatic hydrocarbon condensation, but the overall effects on soot volume-fraction are smaller due to a compensating reduction in surface growth from acetylene. These results are observed under the very fuel-rich environments existing in the flow reactor and diffusion flames. In the premixed flames, however, instabilities did not permit investigation of conditions with sufficiently high equivalence ratios to perturb the aromatic and soot-growth regions.  相似文献   

18.
Results obtained from incorporating a semiempirical soot model into a first-order conditional moment closure (CMC) approach to modeling turbulent nonpremixed flames of ethylene and air are presented. Soot formation is determined via the solution of two transport equations for soot mass fraction and particle number density, with acetylene and benzene employed as the incipient species responsible for soot nucleation, and the concentrations of these species calculated using a detailed gas-phase kinetic scheme involving 463 reactions and 70 species. The study focuses on the influence of differential diffusion of soot particles on soot volume fraction predictions. The results of calculations are compared with experimental data for three sooting ethylene flames and, in general, predictions of mixing and temperature fields within the three flames show good agreement with data. Soot volume fraction predictions are found to be in significantly better accord with data when differential diffusion is accounted for in the CMC-based soot model, supporting the importance of such effects in sooting flames, as previously noted by Kronenburg et al. in relation to methane combustion. Overall, the study demonstrates that the CMC-based soot model, when used in conjunction with a model of differential diffusion effects, is capable of accurately predicting soot formation in turbulent nonpremixed ethylene-air flames.  相似文献   

19.
The growth of hydrocarbon molecules up to sizes of incipient soot is computed in premixed laminar flames using kinetic Monte Carlo and molecular dynamic methodologies (AMPI code). This approach is designed to preserve atomistic scale structure (bonds, bond angles, dihedral angles) as soot precursors evolve into three-dimensional structures. Application of this code to aliphatic (acetylene) and aromatic (benzene) flame environments is able to explain results in the literature on the differences in properties of soot precursors from these two classes of flames, particularly relating to H/C ratio, particle sphericity, and depolarization ratio.  相似文献   

20.
C1 to C12 stable hydrocarbons, soot volume fraction, major species, and gas temperature have been measured in a series of methane/air coflowing nonpremixed flames whose fuel was separately doped with 5000 ppm of five heptane isomers. The temperatures, residence times, major species concentrations, and heptane consumption rates were similar in each flame, so the large differences in hydrocarbon product concentrations result from the direct chemical effects of the heptanes. The heptanes increased the maximum soot volume fraction in the order trimethylbutane > dimethypentanes > n-heptane, which is also the order of increasing number of branches. The species measurements indicated that this occurred because the more-branched heptanes produced more propene and butene and less ethylene, and therefore formed more propargyl radical through dehydrogenation or H-abstraction/β scission pathways. The results are a useful database for testing detailed chemical kinetic mechanisms of fuel decomposition and hydrocarbon growth from large alkanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号