首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The scattering of obliquely incident water waves by two thin vertical barriers with gaps at different depths has been studied assuming linear theory. Using Havelock’s expansion of water wave potential, the problem is reduced to two pairs of integral equations of the first kind, one pair involving a horizontal component of velocity across the gaps and the other pair involving the difference of potentials across each wall. These two pairs of integral equations can be solved approximately by employing a Galerkin single-term approximation technique to obtain numerical estimates for the reflection and transmission coefficients. These estimates for the reflection and transmission coefficients thus obtained are seen to satisfy the energy identity. The reflection coefficient is plotted against wave number in a number of figures for different values of various parameters involved in the problem. It is observed that the reflection coefficient vanishes at discrete frequencies when the vertical barriers are identical. For nonidentical vertical barriers the reflection coefficient never vanishes, though at some wave number it becomes close to zero. The results for a single barrier and fully submerged two barriers, and for a single barrier with a narrow gap, are also recovered as special cases.  相似文献   

2.
A new BEM approach is presented for the plane elastostatic problem for nonhomogeneous anisotropic bodies. In this case the response of the body is described by two coupled linear second order partial differential equations in terms of displacement with variable coefficient. The incapability of establishing the fundamental solution of the governing equations is overcome by uncoupling them using the concept of analog equation, which converts them to two Poisson’s equations, whose fundamental solution is known and the necessary boundary integral equations are readily obtained. This formulation introduces two additional unknown field functions, which physically represent the two components of a fictitious source. Subsequently, they are determined by approximating them globally with radial basis functions series. The displacements and the stresses are evaluated from the integral representation of the solution of the substitutes equations. The presented method maintains the pure boundary character of the BEM. The obtained numerical results demonstrate the effectiveness and accuracy of the method.  相似文献   

3.
The non-local theory solution of a mode-I permeable crack in a piezoelectric/piezomagnetic composite material plane was given by using the generalized Almansi’s theorem and the Schmidt method in this paper. The problem was formulated through Fourier transform into two pairs of dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. To solve the dual integral equations, the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials. Numerical examples were provided to show the effects of the crack length and the lattice parameter on the stress field, the electric displacement field and the magnetic flux field near the crack tips. Unlike the classical elasticity solutions, it is found that no stress, electric displacement and magnetic flux singularities are present at the crack tips in piezoelectric/piezomagnetic composite materials. The non-local elastic solution yields a finite hoop stress at the crack tip, thus allowing us to use the maximum stress as a fracture criterion.  相似文献   

4.
The boundary integral equation method is very often used to solve exterior problems of scattering of waves (elastic waves, acoustic waves, water waves and electromagnetic waves). It is known, however, that this method fails to provide a unique solution at the so-called irregular frequencies. This difficulty is inherent to the method used rather than the nature of the problem. In the context of elastodynamics. we proposed, in a recent work1, two methods for eliminating these irregular frequencies. Both are based on modifying the fundamental solution. Here we present numerical results pertaining to the solutions of the modified and unmodified integral equations.  相似文献   

5.
Propagation of the coupled electromagnetic wave, which is a superposition of TE and TM waves, in a dielectric circular cylindrical waveguide filled with non-linear inhomogeneous medium is studied (if the permittivity is linear, the coupled wave does not exist). Non-linear coupled TE–TM wave is characterized by two (independent) frequencies and two (coupled) propagation constants (PCs). The physical problem is reduced to a non-linear two-parameter transmission eigenvalue problem for Maxwell’s equations. The system of dispersion equations with respect to PCs is derived and solved numerically. Two types of coupled PCs and coupled guided modes are found: non-linear solutions of the first type become solutions of the corresponding linear problems as the nonlinearity coefficient tends to zero; solutions of the second type seem to be ’purely’ non-linear as they stay away from any linear solutions as coefficient of the nonlinearity tends to zero. Coupled PCs and coupled eigenmodes are calculated and plotted.  相似文献   

6.
The dynamic behavior of two 3D rectangular permeable cracks in a transversely isotropic piezoelectric material is investigated under an incident harmonic stress wave by using the generalized Almansi's theorem and the Schmidt method. The problem is formulated through double Fourier transform into three pairs of dual integral equations with the displacement jumps across the crack surfaces as the unknown variables. To solve the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials. Finally, the relations among the dynamic stress field and the dynamic electric displacement filed near the crack edges are obtained, and the effects of the shape of the rectangular crack, the characteristics of the harmonic wave, and the distance between two rectangular cracks on the stress and the electric intensity factors in a piezoelectric composite material are analyzed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The parameter recovery problem for cancellous bone by acoustic interrogation is investigated numerically. Biot’s equations coupled with boundary integral equations are used to model ultrasound propagation through a bone sample immersed in a water tank. The mathematical formulation for two-dimensional orthotropic bone is presented, but numerical results are only discussed in the isotropic case. The inversion procedure consists in minimizing some error on the pressure at measurement points located outside the bone sample. For this purpose, two different minimization algorithms are considered. A number of numerical tests are performed for a range of frequencies, which demonstrate the model’s ability to recover some bone parameters with satisfactory accuracy.  相似文献   

8.
Summary The plane strain problem for an interface crack between two bonded piezoelectric semi-infinite planes under remote electromechanical loading is considered. Mechanically frictionless and electrically permeable contact zones are assumed at the crack tips and the remaining part of the crack is considered as electrically limited permeable with a certain permeability of the crack medium. Patron’s way of modelling limited permeable conditions is used. By means of integral transforms the problem is reduced to a nonlinear system of singular integral equations. An iterative scheme together with discretization and utilization of Gauss-Chebishev quadrature rule is applied for the solution of this system. Distributions of the electric displacement along the crack region as well as the stress and electric intensity factors and the energy release rate are found for different electromechanical loads and crack permeabilities. Calculations are performed for an artificial contact zone length, however the way of an easier determination of the associated values for the real contact zone length is shown. As a particular case of the obtained solution the crack in a homogeneous piezoelectric media is considered. The results of the calculations are compared to the corresponding results obtained earlier by means of Hao and Shen’s way of modelling the crack permeability. Even though the electric displacements obtained in the respective framework of these models differ essentially, it appears that the fracture mechanical parameters are in good agreement with each other.  相似文献   

9.
波纹膜片的非线性稳定   总被引:5,自引:0,他引:5  
袁鸿  张湘伟  刘人怀 《工程力学》2005,22(6):202-206
应用轴对称旋转扁壳的基本方程,研究了在任意载荷作用下各种边界条件的波纹膜片的非线性稳定问题。采用格林函数方法,将扁壳的非线性微分方程组化为非线性积分方程组。再使用展开法求出格林函数,即将格林函数展开成特征函数的级数形式,积分方程就成为具有退化核的形式,从而容易得到非线性代数方程组。应用牛顿法求解非线性代数方程组时,为了保证迭代的收敛性,选取位移作为控制参数,逐步增加位移,求得相应的载荷。作为算例,首先研究了带中心平台三波纹膜片的局部失稳现象,然后讨论了由于缺陷的存在,波纹膜片有可能出现的极值点失稳,这是一种类似扁球壳的总体失稳现象。解答可供波纹膜片的设计参考。  相似文献   

10.
Formulation of time-domain boundary element method for elastodynamic analysis of interaction between rigid massive disc-shaped inclusions subjected to impinging elastic waves is presented. Boundary integral equations (BIEs) with time-retarded kernels are obtained by using the integral representations of displacements in a matrix in terms of interfacial stress jumps across the inhomogeneities and satisfaction of linearity conditions at the inclusion domains. The equations of motion for each inclusion complete the problem formulation. The time-stepping/collocation scheme is implemented for the discretization of the BIEs by taking into account the traveling nature of the generated wave field and local structure of the solution at the inclusion edges. Numerical results concern normal incidence of longitudinal wave onto two coplanar circular inclusions. The inertial effects are revealed by the time dependencies of inclusions’ kinematic parameters and dynamic stress intensity factors in the inclusion vicinities for different mass ratios and distances between the interacting obstacles.  相似文献   

11.
The solution of an impermeable penny-shaped crack subjected to a concentrated thermal load (prescribed point temperature) applied arbitrarily at the crack surfaces is derived using the generalized potential theory method. The integral equation governing the temperature field is found to have the same structure as that for the elastic punch problem and the integro-differential equations related to the electroelastic field are similar to that reported for the elastic crack problem. Significant solutions to these integro-differential equations are obtained by generalizing the previous results available in literature. Exact three-dimensional expressions for the full-space thermo-electro-elastic field are finally obtained by simple differentiation, all in terms of elementary functions. The exact analysis for a permeable crack is also presented and discussed. The obtained point temperature solutions play an important role in the related BEM analysis.  相似文献   

12.
A numerical method based on integral equations is proposed and investigated for the Cauchy problem for the Laplace equation in 3-dimensional smooth bounded doubly connected domains. To numerically reconstruct a harmonic function from knowledge of the function and its normal derivative on the outer of two closed boundary surfaces, the harmonic function is represented as a single-layer potential. Matching this representation against the given data, a system of boundary integral equations is obtained to be solved for two unknown densities. This system is rewritten over the unit sphere under the assumption that each of the two boundary surfaces can be mapped smoothly and one-to-one to the unit sphere. For the discretization of this system, Weinert’s method (PhD, Göttingen, 1990) is employed, which generates a Galerkin type procedure for the numerical solution, and the densities in the system of integral equations are expressed in terms of spherical harmonics. Tikhonov regularization is incorporated, and numerical results are included showing the efficiency of the proposed procedure.  相似文献   

13.
The boundary integral equations that are called guided-mode extracted integral equations are applied to the investigation of the power-coupling-properties between two arbitrarily ended dielectric slab waveguides. The integral equations derived in this paper can be solved by the conventional boundary-element method. The reflection and coupling coefficients of the guided wave, as well as the scattering power, are calculated numerically for the case of incident TE guided-mode waves. The results presented are checked by the energy conservation law and the reciprocity theorem. Numerical results are presented for several geometries of coupling, including systems with three-layered symmetrical and asymmetrical slab waveguides.  相似文献   

14.
The procedure describes the derivation of boundary integral equations for surface acoustic waves propagating under periodic metal strip gratings with piezoelectric films. It takes into account the electrical and mechanical perturbations, including the effects of mass loading caused by the gratings with an arbitrary shape. First, an integral equation is derived with line integrals on the boundaries within one period. This derivation is based on Hamilton's principle and uses Lagrange's method of multipliers to alleviate the continuous conditions of the displacement and the electric potential on the boundaries. Second, boundary integral equations corresponding to each substrate, piezoelectric film, metal strip, and free space region are obtained from the integral equation using the Rayleigh-Ritz method for admissible functions. With this procedure, it is not necessary to make any assumptions for separation of the boundary conditions between two neighboring regions. Consequently, we clarify the theoretical basis for the analytical procedure using boundary integral equations for longitudinal LSAW modes.  相似文献   

15.
In this paper, the anti-plane problem for an interfacial crack between two dissimilar magneto-electro-elastic plates subjected to anti-plane mechanical and in-plane magneto-electrical impact loadings is investigated. Four kinds of crack surface conditions are adopted: magneto-electrically impermeable (Case 1), magnetically impermeable and electrically permeable (Case 2), magnetically permeable and electrically impermeable (Case 3), and magneto-electrically permeable (Case 4). The position of the interfacial crack is arbitrary. The Laplace transform and finite Fourier transform techniques are employed to reduce the mixed boundary-value problem to triple trigonometric series equations in the Laplace transform domain. Then the dislocation density functions and proper replacements of the variables are introduced to reduce the series equations to a standard Cauchy singular integral equation of the first kind. The resulting integral equation together with the corresponding single-valued condition is approximated as a system of linear algebra equations, which can easily be solved. Field intensity factors and energy release rates are determined and discussed. The effects of loading combination parameters on dynamic energy release rate are plotted for Cases 1-3. On the other hand, since the magneto-electrically permeable condition is perhaps more physically reasonable for type III crack, the effect of the crack configuration on the dynamic fracture behavior of the crack tips is studied in detail for Case 4. The results could be useful for the design of multilayered magneto-electro-elastic structures and devices.  相似文献   

16.
Based on the full‐space Green's functions, a three‐dimensional time‐harmonic boundary element method is presented for the scattering of elastic waves in a triclinic full space. The boundary integral equations for incident, scattered and total wave fields are given. An efficient numerical method is proposed to calculate the free terms for any geometry. The discretization of the boundary integral equation is achieved by using a linear triangular element. Applications are discussed for scattering of elastic waves by a spherical cavity in a 3D triclinic medium. The method has been tested by comparing the numerical results with the existing analytical solutions for an isotropic problem. The results show that, in addition to the frequency of the incident waves, the scattered waves strongly depend on the anisotropy of the media. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The problem of a through permeable crack situated in the mid-plane of a piezoelectric strip is considered under anti-plane impact loads for two cases. The first is that the strip boundaries are free of stresses and of electric displacements, and the second is that the strip boundaries are clamped rigid electrodes. The method adopted is to reduce the mixed initial-boundary value problem, by using integral transform techniques, to dual integral equations, which are further transformed into a Fredholm integral equation of the second kind by introducing an auxiliary function. The dynamic stress intensity factor and energy release rate in the Laplace transform domain are obtained in explicit form in terms of the auxiliary function. Some numerical results for the dynamic stress intensity factor are presented graphically in the physical space by using numerical techniques for solving the resulting Fredholm integral equation and inverting Laplace transform.  相似文献   

18.
The problem of diffraction of anti-plane shear waves by two running Griffith cracks of finite length is investigated by using the Fourier transform method. The mixed boundary value problem is reduced to a pair of triple integral equations having trigonometrical kernels. Using the finite Hilbert transform technique, a solution of the pair of triple integral equations is obtained for the small wave number. Approximate formulae are derived for the stress intensity factors. Numerical results for the stress intensity factors are displayed vs wave number for different crack lengths, velocities and angles of incidence.  相似文献   

19.
J. K. Du  Y. P. Shen  X. Wang 《Acta Mechanica》2002,158(3-4):169-183
Summary This paper presents an analysis of the scattering of anti-plane shear waves by a single piezo-electric cylindrical inclusion partially bonded to an unbounded matrix. The anti-plane governing equations for piezoelectric materials are reduced to Helmholtz and Laplacian equations. The fields of scattered waves are obtained by means of the wave function expansion method when the bonded interface is perfect. When the interface is partially debonded, the region of the debonding is modeled as an interface crack with non-contacting faces. The electric permeable boundary conditions are adopted, i.e. the normal electric displacement and electric potential are continuous across the crack faces. The crack opening displacement is represented by Chebyshev polynomials and a system of equations is derived and solved for the unknown coefficients.  相似文献   

20.
Within the context of the linearised theory of time-harmonic water waves in three dimensions, a number of identities are obtained that are satisfied throughout the fluid domain by the velocity potential in scattering problems. This is done for both incident plane waves and for incident cylindrical waves. The implications of these results for the solution of time-domain scattering problems by the method of expansion in generalised eigenfunctions are discussed. In particular, it is demonstrated explicitly, for both two and three dimensions, that two different formulations of the generalised eigenfunction method are equivalent. Further, a new representation is given for the time-domain solution as an integral over the angles of incidence for particular generalised eigenfunctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号