首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
基于保局投影的离线签名识别   总被引:2,自引:1,他引:2       下载免费PDF全文
针对离线签名识别中的特征提取问题,提出了一种基于保局投影的签名识别方法。该方法首先对签名图像进行形状特征、伪动态特征和纹理特征的提取;然后采用保局投影得到更具判别性的特征;最后运用支持向量机进行分类识别。实验表明该方法不但能有效地降低特征空间的维数,而且能使分类准确率得到显著提高。  相似文献   

2.
提出了一种新的基于局部保持映射(Locality Preserving Projections,LPP)降维的图像隐密检测方案。为降低图像特征向量的维数,同时保持其内在低维结构,方便构造更有效的分类器,在经过小波变换形成图像特征后,利用LPP算法得到图像特征集的低维流形,实现对图像高维特征的降维。进而使用支持向量机(SVM)算法将降维后的特征映射到分类特征空间,实现对正常图像和隐密图像分类。实验结果表明,与不采用降维算法的检测方案相比,提出的方案能够显著地提高检测的准确率。  相似文献   

3.
图像集匹配是模式识别领域研究的热点问题之一。从图像分布的局部结构出发,提出格拉斯曼流形上局部结构保持的图像集匹配方法。将图像集合张成的子空间投影到格拉斯曼流形,通过子空间之间的典型相关计算格拉斯曼核,将集合的相似性转换为流形上点之间的距离的计算。在基于图像集合的对象识别任务上测试提出的算法,实验结果表明,提出的方法在识别率上超越了当前主流的图像集匹配算法。  相似文献   

4.
对国际上近来提出的保局投影(LPP)算法在图像检索中的最新应用研究进行了详细介绍;分析指明了几种基于LPP的图像检索算法的特点;设计并完成了基于LPP的图像检索算法图像检索效果的比较实验;最后根据实验结果总结了各类算法的优缺点。  相似文献   

5.
目的提出了黎曼流形上局部结构特征保持的图像集匹配方法。方法该方法使用协方差矩阵建模图像集合,利用对称正定的非奇异协方差矩阵构成黎曼流形上的子空间,将图像集的匹配转化为流形上的点的匹配问题。通过基于协方差矩阵度量学习的核函数将黎曼流形上的协方差矩阵映射到欧几里德空间。不同于其他方法黎曼流形上的鉴别分析方法,考虑到样本分布的局部几何结构,引入了黎曼流形上局部保持的图像集鉴别分析方法,保持样本分布的局部邻域结构的同时提升样本的可分性。结果在基于图像集合的对象识别任务上测试了本文算法,在ETH80和YouTube Celebrities数据库分别进行了对象识别和人脸识别实验,分别达到91.5%和65.31%的识别率。结论实验结果表明,该方法取得了优于其他图像集匹配算法的效果。  相似文献   

6.
基于改进的保局投影视频特征提取   总被引:1,自引:0,他引:1  
提出一种视频镜头特征提取方法。针对保局投影变换要预先指定降维后的维数和近邻参数K,根据降维前后的结构误差提出确定最佳降维维数的方法,结合各个数据点邻域的统计特征实现近邻参数K的动态选择。在此基础上,将多个视频镜头的高维特征投影到低维空间获得最佳投影矩阵,新的视频特征根据此投影矩阵进行降维处理。对比实验结果表明,通过保局投影变换提取出来的特征比其它特征更加有利于视频的镜头分割。  相似文献   

7.
为了克服保局投影方法(locality preserving projection,LPP)对噪音敏感,有效性依赖于近邻图构造等缺点,提出一种基于集成图的保局投影方法(graphs ensemble based LPP,GELPP).该方法先根据鲁棒统计原理定义出对噪声鲁棒的样本间相似性度量,再以该度量为基础构造多个近似的最大生成树;然后利用集成学习泛化能力强的优点来组合多个树为一个集成图;最后通过替换LPP的近邻图和相似性度量来进行保局投影.在高维人脸图像上的降维实验结果表明,该方法对噪声鲁棒,以及在集成图上降维的有效性.  相似文献   

8.
基于保局投影的相关反馈算法   总被引:1,自引:0,他引:1  
在原有保局投影算法中引入用户反馈,用其更新构建降维映射的特征向量,从而得到一个更能够反映语义属性的图像表示子空间.该算法利用用户反馈迅速优化图像表示,使它具有长期学习的能力.实验结果表明:该算法可以提高检索的准确度,而且在经过长期学习后可以获得一个近似最优的图像降维子空间.  相似文献   

9.
驾驶员疲劳驾驶是造成交通死亡事故的重要原因之一,研究驾驶疲劳自动识别具有重要的理论意义和应用价值。提出了一种新的基于自适应的保局投影的疲劳识别方法。采用保局投影进行疲劳特征提取,并利用邻域压缩或扩张方法自适应选取保局投影算法中的邻域,既加强了样本点间的关联性,又保持了局部几何结构;采用模糊k近邻的方法进行疲劳识别。在人脸疲劳数据集上进行实验,结果说明了该方法的有效性。  相似文献   

10.
运用保局投影(LPP)算法进行人脸识别时,噪声会破坏真实流形。为此,提出一种解决噪声的新方法——HaarLPP方法。该方法利用Haar小波变换降低噪声的影响,运用LPP算法进行降维,依据最近邻准则完成人脸识别。基于AT&;T与Sheffiled人脸数据库的实验结果表明,该方法在噪声的敏感性方面优于传统LPP算法。  相似文献   

11.
特征提取是人脸识别的一个重要研究领域,能否有效地提取判别特征是决定人脸识别算法好坏的关键。一般的人脸识别算法都是基于图像向量的,需要将2维人脸图像压缩成1维向量,这不仅破坏了像素之间原有的空间结构关系,而且转换后的向量维数过高。为了避免这种情况,提出了一种直接基于图像矩阵的人脸识别算法——2维保局投影算法。由于该算法是在保局投影的基础上进行扩展,使其可以直接面向2维图像矩阵进行处理,同时在构建相似矩阵的时候引入了样本类别信息,因而可有效地提取人脸图片的2维判别特征。另外还采用最小近邻分类器估算识别率。在AT&T人脸库的实验结果表明,与Eigenface、Fisherface以及Laplacianface算法相比,该方法具有较好的识别率。  相似文献   

12.
面对日益增长的图像数据库,为用户提供一个简洁高效的搜索和浏览解决方案成为一个紧迫而且充满挑战的问题.图像聚类技术可以在许多方面为此提供帮助,例如图像数据预处理、用户界面设计.以及对搜索结果的聚类等.在众多聚类算法中,谱聚类(spectral clustering)方法由于能够解决复杂分布数据的聚类问题,以及接近全局最优的性能,成为近年来广受关注的一种方法.然而,目前存在的谱聚类方法,譬如normalized cut在处理新增数据点的聚类时,计算复杂度很高.提出了一种新的聚类算法——保局聚类.保局聚类在拥有许多非线性谱聚类方法优点的同时,又具有独特的数学特性——能提供显式的映射函数.这为在原数据集和新增数据集上进行高效的聚类提供了可能.实验结果显示,保局聚类比K均值聚类和主成分分析后的K均值聚类效果要好.实验同样显示,保局聚类与normalized cut效果可比,而前者更加高效.  相似文献   

13.
完备鉴别保局投影人脸识别算法   总被引:15,自引:0,他引:15  
为了充分利用保局总体散布主元空间内的鉴别信息进行人脸识别,提出了一种完备鉴别保局投影(complete discriminant locality preserving projections,简称CDLPP)人脸识别算法.鉴于Fisher鉴别分析和保局投影已经被广泛的应用于人脸识别,完备鉴别保局投影(locality preserving projections,简称LPP)算法将这两者结合起来,分析了保局类内散布、类间散布和总体散布的主元空间和零空间内包含的鉴别信息.该算法采用奇异值分解(singular value decomposition,简称SVD),去除了不含任何鉴别信息的保局总体散布的零空间;分别在保局类内散布的主元空间和零空间提取规则鉴别特征和不规则鉴别特征;用串联的方式在特征层融合规则鉴别特征和不规则鉴别特征形成完备的鉴别特征进行人脸识别.在ORL库、FERET子库和PIE子库上的大量识别实验充分表明了完备鉴别保局投影算法的性能优于线性鉴别分析、保局投影和鉴别保局投影等现有的子空间人脸识别算法,验证了算法的有 效性.  相似文献   

14.
张伟  夏利民  罗大庸 《计算机科学》2010,37(11):265-267
提出了一种基于人脸运动信息和改进保局投影的疲劳识别方法。利用光流技术计算人脸皮层的运动速度,并以此作为疲劳特征;为了有效地进行疲劳特征降维,提出了改进的保局投影方法,该方法很好地保留了数据的局部流形结构和全局结构;采用加权k近部的方法进行疲劳识别。实验结果表明该方法具有很好的识别效果。  相似文献   

15.
This paper proposes a novel locality preserving projections (LPP) algorithm for image recognition, namely, the direct locality preserving projections (DLPP), which directly optimizes locality preserving criterion on high-dimensional raw images data via simultaneous diagonalization, without any dimensionality reduction preprocessing. Our algorithm is a direct and complete implementation of LPP. Experimental results on the PolyU palmprint database and ORL face database show the effectiveness of the proposed algorithm.  相似文献   

16.
一种基于Schur分解的正交鉴别局部保持投影方法   总被引:2,自引:0,他引:2       下载免费PDF全文
人脸识别是模式识别领域中的一项重要的研究课题。到目前为止,已经提出了许多方法来处理人脸的识别问题。最近,许多流形学习算法被提出并且成功地应用于人脸识别当中。这些流形学习方法能够保持人脸图像数据的局部结构,同时,还可以发现人脸的非线性结构。在这些流形学习方法中,局部保持投影方法(LPP)是最有效的方法之一。基于LPP方法,提出了一种新的人脸识别方法——基于Schur分解的正交鉴别局部保持投影方法(ODLPPS)。与LPP方法相比,ODLPPS 把类间散度与类内散度之差的信息融入到LPP的目标函数中并且获得了正交的基向量。在ORL和Yale 人脸数据库上的实验结果表明,该方法在识别性能上优于一些已经存在的方法,如eigenface,Fisherface,LPP 和orthogonal LPP(OLPP)。  相似文献   

17.
局部保持投影,保持数据的邻域关系,已成功应用于过程监测.然而,局部保持投影忽略了非局部结构信息,不能保证远距离样本之间的关系.最近提出的局部保持稀疏模型,利用稀疏编码获得一组超完备基,较好地表征原始数据的内在结构特征.鉴于稀疏编码能够较好地实现过程数据的局部稀疏表示,提出了非局部约束下的局部稀疏保持投影方法.首先,利用稀疏编码获取表征全局结构信息的稀疏码;其次,在非局部关系约束下保持局部结构特征,估计出不同稀疏码的概率密度,赋以相应权重,以便突出其对故障的贡献度;然后,融合过程状态信息构建合成统计量指标实施故障检测;最后,将提出的方法用于数值系统和TE化工过程仿真验证,并与现有的几种模型进行对比,结果表明了该方法的优越性.  相似文献   

18.
基于Gabor小波和核保局投影算法的表面缺陷自动识别方法   总被引:3,自引:0,他引:3  
研究了Gabor小波变换和核保局投影(Kernel locality preserving projections, KLPP)算法的原理, 分析了热轧钢板表面缺陷的特点, 提出了一种基于Gabor小波和KLPP算法的特征提取方法, 并应用于热轧钢板表面缺陷自动识别. 首先利用Gabor小波将图像分解到5个尺度8个方向的40个分量中, 接着对原始图像和各个分量的实部和虚部分别提取均值和方差, 得到一个162维的特征向量, 然后利用KLPP算法将该特征向量的维数降到21维, 最后利用多层感知器网络对样本进行分类识别. 本文提出的特征提取方法具有计算简单、可并行处理的特点, 对沿一定方向分布的边缘和纹理具有较高的区分能力. 利用从工业现场采集的缺陷图像对本文方法进行了实验, 识别率达到93.87%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号