首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contrast to the general opinion that very high efficiencies can only be obtained using complex processing, with the novel technologically simple and environmentally sound obliquely evaporated contact (OECO) type solar cell efficiencies exceeding 21% could be obtained without applying masks or photolithography. Two different approaches of OECO cells using MIS contacts and exclusively Al as metallization are discussed: (i) with a diffused n+-emitter (MIS-n+p) and (ii) with an inversion layer emitter (MIS-IL). The most important results particularly for industrial production are efficiencies of 19% and 20% for simply to fabricate 10×10 cm2 OECO cells on commercial CZ-Si and FZ-Si, respectively. These are the highest efficiencies ever reported for solar cells of industrial size.  相似文献   

2.
Recently, a substantially simplified PERC silicon solar cell has been developed at ISFH with independently confirmed 1-sun efficiencies of up to 20.0%. This paper describes the details of the relatively simple cell fabrication process and experimentally characterizes the new cells. The simplified design involves reflection control by means of random pyramids, the direct evaporation of the front metal grid onto the random pyramids, elimination of the need for nontextured areas underneath the contact grid, and the use of a single phosphorous diffusion (1-step emitter).  相似文献   

3.
Luminescent porous silicon (PS) was prepared for the first time using a spraying set-up, which can diffuse in a homogeneous manner HF solutions, on textured or untextured (1 0 0) oriented monocrystalline silicon substrate. This new method allows us to apply PS onto the front-side surface of silicon solar cells, by supplying very fine HF drops. The front side of N+/P monocrystalline silicon solar cells may be treated for long periods without altering the front grid metallic contact. The monocrystalline silicon solar cells (N+/P, 78.5 cm2) which has undergone the HF-spraying were made with a very simple and low-cost method, allowing front-side Al contamination. A poor but expected 7.5% conversion efficiency was obtained under AM1 illumination. It was shown that under optimised HF concentration, HF-spraying time and flow HF-spraying rate, Al contamination favours the formation of a thin and homogeneous hydrogen-rich PS layer. It was found that under optimised HF-spraying conditions, the hydrogen-rich PS layer decreases the surface reflectivity up to 3% (i.e., increase light absorption), improves the short circuit current (Isc), and the fill factor (FF) (i.e., decreases the series resistance), allowing to reach a 12.5% conversion efficiency. The dramatic improvement of the latter is discussed throughout the influence of HF concentration and spraying time on the IV characteristics and on solar cells parameters. Despite the fact that the thin surfae PS layer acts as a good anti-reflection coating (ARC), it improves the spectral response of the cells, especially in the blue-side of the solar spectrum, where absorption becomes greater, owing to surface band gap widening and conversion of a part of UV and blue light into longer wavelengths (that are more suitable for conversion in a Si cell) throughout quantum confinement into the PS layer.  相似文献   

4.
In 1996 a conversion efficiency of 17.1% had been obtained on 15 cm×15 cm mc-Si solar cell. In this paper, large-scale production technology of the high-efficiency processing will be discussed. Enlarging reactive ion etching (RIE) equipment size, technology of passivation, and fine contact grid with low resistance by screenprinted metallization, which is firing through PECVD SiN, have been investigated.  相似文献   

5.
High-efficiency silicon space solar cells   总被引:1,自引:0,他引:1  
SHARP's activities on Si solar cells developments and features of Si solar cells for space use in comparison with GaAs solar cells are presented. Two types of high-efficiency silicon solar cells and the same kinds of high-efficiency solar cells with integrated bypass function (IBF cells) were developed and qualified for space applications. The NRS/LBSF cells and NRS/BSF cells showed an average of 18% and 17% efficiencies, respectively, at AMO and 28°C conditions. The IBF cells have P+N+ diodes on the front surface to protect itself from reverse voltage due to shadowing. The designs and features of these solar cells are presented. The radiation tests results of these solar cells are also presented. The NRS/BSF cells showed lower degradation rate compared to conventional BSFR cells with the same thickness (100 μm). But the NRS/LBSF cells showed a higher degradation rate than the BSFR cells. The IBF cells showed almost the same radiation characteristics as the same kinds of cells without IBF. The results of radiation tests on these high-efficiency solar cells and the discussions about the radiation characteristics of them are presented. In the last section, the future silicon solar cell development plan is discussed.  相似文献   

6.
Surface passivation in high efficiency silicon solar cells   总被引:1,自引:0,他引:1  
Surface passivation for crystalline silicon solar cells is particularly important for devices with open-circuit voltages in excess of 650 mV. Thick passivating thermal oxides, originally developed for use with buried contact solar cells, are shown to produce the most effective and stable surface passivation particularly in conjunction with lightly phosphorus diffused surfaces. However, for improved optical performance, antireflection coatings are only effective with surface oxide thicknesses reduced to 100–200 Å. Thinner passivating oxides cause significant voltage loss, most of which can be recovered through hydrogen passivation. Throughout this study, variation in surface passivation approaches has produced open-circuit voltages ranging from 620 mV to record voltages of 720 mV.  相似文献   

7.
The design of the grid contact in silicon solar cells is one of the most important steps for the optimization and fabrication of these energy conversion devices. The voltage drop due to the lateral flow of current towards the grid fingers can be a limiting factor causing the reduction of conversion efficiency. For low current levels this voltage drop can be made small, for typical values of sheet resistance in the emitter, but for solar cells made to operate at high sun concentrations this efficiency loss can be important, unless there is a clear vision of the current and voltage distribution so that the emitter and grid design can be improved. Hence, it is important to establish and solve the current and voltage distribution equations for solar cells with a grid contact. In this work, first these equations are established and then they are solved in order to show the effects that the lateral current flow in the emitter cause on the voltage distribution, particularly at high illumination levels. In addition, it will be shown that the open circuit voltage is significantly reduced due to the lateral current flow as compared to the value predicted from a simple equivalent circuit with a lumped resistance model.  相似文献   

8.
In order to be useful for certain niche applications, crystalline silicon solar cells must be able to sustain either one-time flexure or multiple non-critical flexures without significant loss of strength or efficiency. This paper describes experimental characterisation of the behaviour of thin crystalline silicon solar cells, under either static or repeated flexure, by flexing samples and recording any resulting changes in performance. Thin SLIVER cells were used for the experiment. Mechanical strength was found to be unaffected after 100,000 flexures. Solar conversion efficiency remained at greater than 95% of the initial value after 100,000 flexures. Prolonged one-time flexure close to, but not below, the fracture radius resulted in no significant change of properties. For every sample, fracture occurred either on the first flexure to a given radius of curvature, or not at all when using that radius. In summary, for a given radius of curvature, either the flexed solar cells broke immediately, or they were essentially unaffected by prolonged or multiple flexing.  相似文献   

9.
We have investigated the surface and bulk passivation technique on large-area multicrystalline silicon solar cells, a large open-circuit voltage has been obtained for cells oxidized to passivate the surface and hydrogen annealed after deposition of silicon nitride film on both surfaces by plasma CVD method (P---SiN) to passivate the bulk. The texture surface like pyramid structure on multicrystalline silicon surface has been obtained uniformly using reactive ion etching (RIE) method. Combining these RIE method and passivation schemes, the conversion efficiency of 17.1% is obtained on 15 cm × 15 cm multicrystalline silicon solar cell. Phosphorus diffusion, BSF formation, passivation technique and contact metallization for low-cost process sequence are also described in this paper.  相似文献   

10.
This study evaluated the possibility of utilizing a spray-coating process for large-area organic solar cells (OSCs) combined with a metal electrode geometry. The effects of the cell area in spray-coated OSCs were investigated systematically by introducing a metal sub-electrode and grid-electrode to realize large-area cells of up to 12.25 cm2. The series resistance could be reduced significantly by inserting a metal grid-electrode into the indium tin oxide (ITO) anode, yielding a power conversion efficiency of 2.11% at a cell area of 12.25 cm2 and 2.49% at an effective photocurrent generated area of 11.23 cm2 under AM.1.5 simulated illumination. This is comparable to the 3.13% obtained in the cell produced by spray-coating at a cell area of 0.38 cm2.  相似文献   

11.
A measurement system for solar cells, which can be used for solar cells with a maximum size of 12 × 12 cm2 and photocurrents up to 8 A, is described. The measurement facility consists of a commercially available 1000-W solar simulator, a temperature-controlled test chuck, measurement electronics for recording photovoltaic output characteristics of solar cells, and a data acquisition unit. Most emphasis is given to design of measurement electronics, construction of test chuck, beam uniformity and spectral distribution of solar simulator light.  相似文献   

12.
ZnO films prepared by magnetron sputtering on glass substrates and textured by post-deposition chemical etching are applied as substrates for p–i–n solar cells. Using both rf and dc sputtering, similar surface textures can be achieved upon etching. Excellent light trapping is demonstrated by high quantum efficiencies at long wavelengths for microcrystalline silicon solar cells. Applying an optimized microcrystalline/amorphous p-layer design, stacked solar cells with amorphous silicon top cells yield similarly high stabilized efficiencies on ZnO as on state-of-the-art SnO2 (9.2% for a-Si/a-Si). The efficiencies are significantly higher than on SnO2-coated float glass as used for module production.  相似文献   

13.
This paper reviews recent progress in large-area a-Si/a-SiGe tandem solar cells at Sanyo. Optimized hydrogen dilution conditions for high-rate deposition of hydrogenated amorphous silicon (a-Si:H) films and thinner i-layer structures have been systematically investigated for improving both the stabilized efficiency and the process throughput. As a result, a high photosensitivity of 106 for a-Si:H films has been maintained up to the deposition rate of 15 Å/s. Furthermore, the world's highest initial conversion efficiency of 11.2% which corresponds to a stabilized efficiency of about 10% has been achieved for a 8252 cm2 a-Si/a-SiGe tandem solar cell by combining the optimized hydrogen dilution and other successful technologies.  相似文献   

14.
A detailed theoretical method is presented for the determination of the interfacial dynamic velocity (IDV) Sd introduced at the edge of the space-charge region in the base of a solar cell. The method is based on a dynamic measurement at an arbitrary point on the IV curve and exploits measurements carried out on a solar cell under illumination. A transient regime between two steady states around the operating point is investigated. The theory takes into account the carrier generation and recombination rates. The measured values of Sd are shown to depend on the cell operating conditions, and the error in the determination of Sd increases with the light intensity that is kept constant during measurements. The interfacial dynamic velocity characterizes the junction as an active interface related to the current flow through the device and appears to allow solar cell quality control since it also depends on the cell structure parameters.  相似文献   

15.
Compared to the Czochralski (CZ) silicon used in microelectronic industry (M-CZ Si), the annealing behavior of oxygen in the CZ silicon used for solar cells (S-CZ Si) was investigated by means of FTIR and SEM. It was found that the oxygen concentration in S-CZ Si crystal was lower than in the M-CZ Si crystal. During single-step annealing in the temperature range of 800–1100°C, the oxygen in S-CZ Si was hard to precipitate, even if the material contained higher carbon concentrations. After pre-annealing at 750°C, many more oxygen precipitates were formed. The amount and density of the oxygen precipitates were almost the same as in M-CZ Si annealed in single step. It is considered that oxygen has no significant influence on the efficiency of solar cells made from Cz silicon if it is annealed only by a single step in the range of 800–1100°C.  相似文献   

16.
This paper describes how the efficiency and throughput of industrial screen-printed multi-Si solar cells can be increased far beyond the state-of-the-art production cells. Implementation of novel processes of isotropic texturing, shallow emitter or single diffusion selective emitter, combined with screen-printed metallization fired through a PECVD SiNx ARC layer, have been described. Novel dedicated fabrication equipment for emitter diffusion and a PECVD SiNx deposition system are developed and implemented thereby removing the processing bottlenecks linked to the diffusion and bulk passivation processes. Several types of back-contacted solar cells with improved visual appeal required for building integrated photovoltaic (BIPV) application have been developed.  相似文献   

17.
Research and development of crystalline silicon solar cells in Japan have greatly advanced for the past 10 years. Fundamental research has been conducted on the recombination and passivation of minority carriers at Si/SiO2 interfaces and in bulk regions including grain boundaries. Qualities of Si feedstock and substrates have been improved. A small-area cell efficiency using monocrystalline silicon substrates has reached 21 % and that for large-area, multicrystalline solar cells up to 17% by using low-cost cell fabrication processes. Such high efficiency values are realized by tenacious improvement of substrate quality and the development of new processes for fabricating solar cells.  相似文献   

18.
We demonstrate the flexibility of UV nanoimprint lithography for effective light trapping in p-i-n a-Si:H/μc-Si:H tandem solar cells. A textured polymeric layer covered with pyramidal transparent conductive oxide structures is shown as an ideal system to promote front light scattering and thus enhanced photocurrent. The double structure incorporated into micromorph tandem thin film silicon solar cells is systematically investigated in order to find a relationship between interface morphology, optical properties and photovoltaic characteristics. To prevent the formation of defects during cell growth, a controllable smoothing of the imprinted texture is developed. Modules grown on polymer structures smoothed via multi-replication show excellent performance reaching a photocurrent of 12.6 mA/cm2 and an efficiency of 12.8%.  相似文献   

19.
Bow in screen-printed back-contact industrial silicon solar cells   总被引:1,自引:0,他引:1  
In this paper, we present a model of the bow in thin back-contact silicon solar cells with screen-printed (SP) silver grid metallization. A modification of the bimetallic strip model is used to model the bow for the interdigitated back-contact, emitter-wrap-through (EWT) solar cell. It is proposed that the contact area fraction of the thick regions (>100 nm)of the binder glass at the Ag–Si contact interface responsible for metallization adhesion is an important parameter necessary for modeling the bow for SP back-contact solar cells with better accuracy. Techniques for reducing the bow are also proposed.  相似文献   

20.
A novel contacting technique has been demonstrated that involves low-temperature sinter of aluminium to form localised pinhole ohmic contacts through a silicon dioxide layer to the silicon substrate. A subsequent deposition of amorphous silicon and another low-temperature sinter allows solid-phase epitaxial growth of p+ silicon (Si) in the pinholes to achieve lower effective surface recombination velocities than the localised Al/Si interface. The technique has been demonstrated to allow ohmic contacts to be formed through oxide as thick as 3000 Å. This paper presents further developments of the contacting technique when applied on the back of buried contact solar cells. Higher fill factors (as high as 80%), improved open-circuit voltages (by 20–28 mV) and an increase of 7–12% in short-circuit currents have been achieved as a result. Initial analysis has revealed that heat treatment required for the formation of pinhole contacts or the epitaxial growth of p+ Si has a detrimental effect on the passivation quality of the oxide layer even in regions where no spiking has occurred. These findings indicate further improvement and optimisation of the contacting technique are possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号