首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The complexity of a turbo equalizer based on the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is manageable only for mildly dispersive channels having a small amount of memory. To enable turbo equalization of highly dispersive channels, we propose the soft-feedback equalizer(SFE). The SFE combines linear equalization and soft intersymbol-interference cancellation. Its coefficients are chosen to minimize the mean-squared error(MSE) between the equalizer output and the transmitted sequence, under a Gaussian approximation to the a priori information and the SFE output. The resulting complexity grows only linearly with the number of coefficients, as opposed to the quadratic complexity of previously reported minimum-MSE structures. We will see that an SFE-based turbo equalizer consistently outperforms another structure of similar complexity, and can outperform a BCJR-based scheme when complexity is taken into account.  相似文献   

2.
In recent years single carrier modulation (SCM) has again become an interesting and complementary alternative to multicarrier modulations such as orthogonal frequency division multiplexing (OFDM). This has been largely due to the use of nonlinear equalizer structures implemented in part in the frequency domain by means of fast Fourier transforms, bringing the complexity close to that of OFDM. Here a nonlinear equalizer is formed with a linear filter to remove part of intersymbol interference, followed by a canceler of remaining interference by using previous detected data. Moreover, the capacity of SCM is similar to that of OFDM in highly dispersive channels only if a nonlinear equalizer is adopted at the receiver. Indeed, the study of efficient nonlinear frequency domain equalization techniques has further pushed the adoption of SCM in various standards. This tutorial paper aims at providing an overview of nonlinear equalization methods as a key ingredient in receivers of SCM for wideband transmission. We review both hybrid (with filters implemented both in time and frequency domain) and all-frequency-domain iterative structures. Application of nonlinear frequency domain equalizers to a multiple input multiple output scenario is also investigated, with a comparison of two architectures for interference reduction. We also present methods for channel estimation and alternatives for pilot insertion. The impact on SCM transmission of impairments such as phase noise, frequency offset and saturation due to high power amplifiers is also assessed. The comparison among the considered frequency domain equalization techniques is based both on complexity and performance, in terms of bit error rate or throughput.  相似文献   

3.
Noncoherent demodulators are very attractive for high performance radio LAN (HIPERLAN) systems because of their low implementation costs and their inherent robustness against frequency and carrier phase offsets. However, when the channel is time dispersive, the nonlinear intersymbol interference (ISI) introduced by these demodulators precludes the use of conventional linear equalization strategies. We present an alternative noncoherent receiver structure followed by a nonlinear equalizer, which includes a RAM and a Viterbi detector, capable of equalizing nonlinear multipath fading channels. In addition, we also present a new algorithm specifically for noncoherent demodulators, which allows estimation of all useful signal values at the input of the equalizer to be stored in the RAM. By means of computer simulations, we report the performance and computational complexity tradeoffs of the receiver/equalizer structure, including antenna diversity. We show that demodulators which consist of a complex receiver and a Viterbi detector are much more robust against multipath fading channels than traditional real noncoherent demodulators. The results suggest that in a typical HIPERLAN scenario, where the channel delay spread is less than 50 ns and a reliable line of sight component exists, it is feasible to combat multipath effects using noncoherent demodulation  相似文献   

4.
Nonlinear intersymbol interference (ISI) leads to significant error rate in nonlinear communication and digital storage channel. In this paper, therefore, a novel computationally efficient functional link neural network cascaded with Chebyshev orthogonal polynomial is proposed to combat nonlinear ISI. The equalizer has a simple structure in which the nonlinearity is introduced by functional expansion of the input pattern by trigonometric polynomial and Chebyshev orthogonal polynomial. Due to the input pattern and nonlinear approximation enhancement, the proposed structure can approximate arbitrarily nonlinear decision boundaries. It has been utilized for nonlinear channel equalization. The performance of the proposed adaptive nonlinear equalizer is compared with functional link neural network (FLNN) equalizer, multilayer perceptron (MLP) network and radial basis function (RBF) along with conventional normalized least-mean-square algorithms (NLMS) for different linear and nonlinear channel models. The comparison of convergence rate, bit error rate (BER) and steady state error performance, and computational complexity involved for neural network equalizers is provided.  相似文献   

5.
6.
A model-based approach for the decision feedback equalization of Volterra type nonlinear communication channels is proposed such that the linear model-based decision feedback equalization can be considered as a special case of the proposed approach. In designing the decision feedback equalizer, the nonlinear decision feedback equalization problem is visualized as a linear, multichannel equalization problem. A complete modified Gram–Schmidt orthogonalization of the input vector is achieved by using modified sequential processing multichannel lattice stages. The elements of the multichannel desired signal vector are then estimated from the new orthogonal set by using only scalar operations. The probability of error performance of the proposed equalizer is improved by the estimation of the elements of the desired signal vector through a sigmoid activation function so that a polynomial perceptron equalizer is realized. The comparative computational complexity calculations and performance results of the proposed decision feedback equalizer are also provided.  相似文献   

7.
Due to the very high symbol rate of terrestrial HDTV systems, up to now there exist no equalization solutions with sufficiently low hardware complexity and satisfactory performance for commercial applications. We present a block sequential least squares decision feedback equalization algorithm with application to over-the-air HDTV channels. The proposed adaptive algorithm is derived on the basis of minimization of the least squares criterion, thereby achieving faster convergent and tracking rate relative to the recommended LMS algorithm. Meanwhile, good numerical stability is guaranteed because it successfully eliminates time updates of the filtering coefficients, which is the main cause of instability of FTF-like algorithms. Also of great significance is its drastic reduction in computational complexity by means of block operation, taking advantage of the slowly time-varying nature of terrestrial broadcasting channels. Simulation results show that the equalizer achieves an almost 3.5 dB SNR improvement at a bit error rate of 3×10-6 without significant increase in computational complexity, as compared to the conventional LMS decision feedback equalizer (DFE) when applied to the equalization of over-the-air HDTV channels  相似文献   

8.
This paper addresses the concern of complexity involved with adaptive equalization in wireless systems operating over time-varying and frequency selective multiple-input multiple-output (MIMO) channels. Here, we propose a decision feedback equalizer using binormalized data-reusing least mean square (BNLMS) algorithm with set-membership filtering for MIMO channels. The performance of the equalizer is investigated for a MIMO receiver in a multi-path fading environment as experienced in the indoor and pedestrian environment. The equalizer performance is also studied for channels having higher delay and Doppler spread. The convergence issues, BER performance and tracking capabilities are examined through computer simulations. Moreover, the computational complexity issue for this MIMO equalizer is compared with other existing data-selective algorithm based techniques.  相似文献   

9.
We propose a time-varying (TV) finite impulse response (FIR) equalizer for doubly selective (time- and frequency-selective) channels. We use a basis expansion model (BEM) to approximate the doubly selective channel and to design the TV FIR equalizer. This allows us to turn a complicated equalization problem into an equivalent simpler equalization problem, containing only the BEM coefficients of both the doubly selective channel and the TV FIR equalizer. The minimum mean-square error (MMSE) as well as the zero-forcing (ZF) solutions are considered. Comparisons with the block linear equalizer (BLE) are made. The TV FIR equalization we propose here unifies and extends many previously proposed serial equalization approaches. In contrast to the BLE, the proposed TV FIR equalizer allows a flexible tradeoff between complexity and performance. Moreover, through computer simulations, we show that the performance of the proposed MMSE TV FIR equalizer comes close to the performance of the ZF and MMSE BLE, at a point where the design as well as the implementation complexity are much lower.  相似文献   

10.
This paper presents a turbo equalization (TEQ) scheme, which employs a radial basis function (RBF)-based equalizer instead of the conventional trellis-based equalizer of Douillard et al. (1995). Structural, computational complexity, and performance comparisons of the RBF-based and trellis-based TEQs are provided. The decision feedback-assisted RBF TEQ is capable of attaining a similar performance to the logarithmic maximum a posteriori scheme in the context of both binary phase-shift keying (BPSK) and quaternary phase-shift keying (QPSK) modulation, while achieving a factor 2.5 and 3 lower computational complexity, respectively. However, there is a 2.5-dB performance loss in the context of 16 quadrature amplitude modulation (QAM), which suffers more dramatically from the phenomenon of erroneous decision-feedback effects. A novel element of our design, in order to further reduce the computational complexity of the RBF TEQ, is that symbol equalizations are invoked at current iterations only if the decoded symbol has a high error probability. This techniques provides 37% and 54% computational complexity reduction compared to the full-complexity RBF TEQ for the BPSK RBF TEQ and 16QAM RBF TEQ, respectively, with little performance degradation, when communicating over dispersive Rayleigh fading channels.  相似文献   

11.
Blind equalization for short burst wireless communications   总被引:4,自引:0,他引:4  
In this paper, we propose a dual mode blind equalizer based on the constant modulus algorithm (CMA). The blind equalizer is devised for short burst transmission formats used in many current wireless TDMA systems as well as future wireless packet data systems. Blind equalization is useful for such short burst formats, since the overhead associated with training can be significant when only a small number of bits are transmitted at a time. The proposed equalizer overcomes the common problems associated with classic blind algorithms, i.e., slow convergence and ill-convergence, which are detrimental to applying blind equalization to short burst formats. Thus, it can eliminate the overhead associated with training sequences. Also, the blind equalizer is extended to a two branch diversity combining blind equalizer. A new initialization for fractionally spaced CMA equalizers is introduced. This greatly improves the symbol timing recovery performance of fractionally spaced CMA equalizers with or without diversity, when applied to short bursts. Through simulations with quasi-static or time-varying frequency selective wireless channels, the performance of the proposed equalizer is compared to selection diversity and conventional equalizers with training sequences. The results indicate that its performance is far superior to that of selection diversity alone and comparable to the performance of equalizers with short training sequences. Thus, training overhead can be removed with no performance degradation for fast time-varying channels, and with slight performance degradation for static channels  相似文献   

12.
An equalizer adaptation technique for compensation of degradations caused by multipath Rayleigh fading channels to π/4 differential quadrature phase shift keying (DQPSK)-modulated signals is presented. The technique is applied to linear and nonlinear transversal-filter-type equalizers. It is based on the method of projection onto convex sets (POCS), realized in a particular form of the iterative least mean squares (LMS) procedure. The convergence speed of the proposed equalizer coefficient adaptation technique and its computational complexity depend on the newly introduced look-back parameter. Both can be tailored to the characteristics of the channel. For achieving convergence speeds comparable to speeds of recursive least squares (RLS) techniques, the computational load of the presented equalization is of the order of the load required of RLS techniques. However, its algorithmic implementation is notably simpler and its code and storage size requirements are smaller. The technique is numerically stable, and it is suitable for low-power implementations in digital signal processors or custom very large-scale integration (VLSI) circuits. Performed simulations verify good performance of the technique in various channel conditions for 900-MHz multipath fading radio channels  相似文献   

13.
A nonlinear decision-based adaptive equalizer compatible with differentially coherent phase shift keying (PSK) is proposed for frequency-selective fading channels. This equalization scheme is appropriate whenever conventional equalizers are not capable of tracking phase variations in selective fading channels. The received signal is first converted to a baseband signal and then sent through a differential detector. A nonlinear processor before the equalizer generates the needed nonlinear terms that are weighted and summed in the equalizer. Nonlinear intersymbol interference at the output of the differential detector is dealt with by minimizing an error signal between the output of the equalizer and the detected data. The adaptation algorithm can be any algorithm currently used for conventional equalizers. Our simulation results confirm that for channels with spectral nulls, equalization is achieved successfully with the proposed scheme, whereas, linear equalizers, either with coherent or noncoherent detection, fail  相似文献   

14.
未来OFDM系统将工作在高载频、高容量、高移动速率的条件下,传统的单抽头频域均衡器将不再适用。该文基于双选择性信道的ICI分析,提出了一种用于OFDM系统的频域Turbo均衡(Frequency-domain Turbo Equalization, FTE)算法。仿真表明该算法具有BER性能好,计算复杂度低的优点,能够很好地抑制ICI。  相似文献   

15.
Code division multiple access (CDMA) has emerged as a popular format for wireless communication systems. As a result of intersymbol interference (ISI) and nonlinearities, the performance of CDMA systems can suffer. In this paper, we propose a blind equalizer for CDMA systems with Volterra (nonlinear) channels. The equalizer requires multiple observations at the receiver, which are obtained through oversampling or an antenna array, and a knowledge of the code of the desired user. Zero forcing equalization is possible in the noise-free case. Simulations demonstrate the performance of the equalizer under a variety of operating conditions  相似文献   

16.
Orthogonal frequency division multiplexing (OFDM) system suffers extra performance degradation in fast fading channels due to intercarrier interference (ICI). Combining frequency domain equalization and bit-interleaved coded modulation (BICM), the iterative receiver is able to harvest both temporal and frequency diversity. Realizing that ICI channels are intrinsically ISI channels, this paper proposes a soft-in soft-out (SISO) maximum a posteriori (MAP) equalizer by extending Ungerboeck's maximum likelihood sequence estimator (MLSE) formulation to ICI channels. The SISO MAP equalizer employs BCJR algorithm and computes the bit log-likelihood ratios (LLR) for the entire received sequence by efficiently constructing a trellis that takes into account of the ICI channel structure. A reduced state (RS) formulation of the SISO MAP equalizer which provides good performance/complexity tradeoff is also described. Utilizing the fact that ICI energy is clustered in adjacent subcarriers, frequency domain equalization is made localized. This paper further proposes two computational efficient linear minimum mean square error (LMMSE) based equalization methods: recursive q-tap SIC-LMMSE equalizer and recursive Sliding-Window (SW) SIC-LMMSE equalizer respectively. Simulations results demonstrate that the iterative SISO RS-MAP equalizer achieves the performance of no ICI with normalized Doppler frequency fdTs up to 20.46% in realistic mobile WiMAX environment.  相似文献   

17.
This paper presents reduced-complexity equalization techniques for broadband wireless communications, both outdoors (fixed or mobile wireless asynchronous transfer mode (ATM) networks) and indoors [high-speed local-area networks (LANs)]. The two basic equalization techniques investigated are decision-feedback equalization (FE) and delayed decision-feedback sequence estimation (DDFSE). We consider the use of these techniques in highly dispersive channels, where the impulse response can last up to 100 symbol periods. The challenge is in minimizing the complexity as well as providing fast equalizer start-up for transmissions of short packets. We propose two techniques which, taken together, provide an answer to this challenge. One is an open-loop timing recovery approach (for both DFE and DDFSE) which can be executed prior to equalization; the other is a modified DFE structure for precanceling postcursors without requiring training of the feedback filter. Simulation results are presented to demonstrate the feasibility of the proposed techniques for both indoor and outdoor multipath channel models. The proposed open-loop timing recovery technique plays a crucial role in maximizing the performance of DFE and DDFSE with short feedforward spans (the feedforward section of DDFSE is a Viterbi sequence estimator). A feedforward span of only five is quite sufficient for channels with symbol rate-delay spread products approaching 100. The modified DFE structure speeds up the training process for these channels by 10-20 times, compared to the conventional structure without postcursor precancellation. The proposed techniques offer the possibility of practical equalization for broadband wireless systems  相似文献   

18.
The paper investigates adaptive equalization of time-dispersive mobile radio fading channels and develops a robust high performance Bayesian decision feedback equalizer (DFE). The characteristics and implementation aspects of this Bayesian DFE are analyzed, and its performance is compared with those of the conventional symbol or fractional spaced DFE and the maximum likelihood sequence estimator (MLSE). In terms of computational complexity, the adaptive Bayesian DFE is slightly more complex than the conventional DFE but is much simpler than the adaptive MLSE. In terms of error rate in symbol detection, the adaptive Bayesian DFE outperforms the conventional DFE dramatically. Moreover, for severely fading multipath channels, the adaptive MLSE exhibits significant degradation from the theoretical optimal performance and becomes inferior to the adaptive Bayesian DFE  相似文献   

19.
杨志  刘泽民 《半导体技术》2007,32(9):800-803
针对单载波频域均衡系统MMSE均衡器存在残留码间干扰的缺点,提出MMSE-RISIC判决反馈均衡器消除残留码间干扰.MMSE-RISIC均衡器采用传统MMSE均衡后的判决数据,对残留码间干扰进行估计并消除.残留码间干扰的估计主要采用FFT和IFFT运算,与其他方法相比计算量较小.对该均衡器在不同信道下进行了计算机仿真,结果表明,在频率选择性衰落信道条件下,系统性能有了较为明显的提高.  相似文献   

20.
A decision feedback equalizer with time-reversal structure   总被引:1,自引:0,他引:1  
This work describes the use of a receiver with a time-reversal structure for low-complexity decision feedback equalization of slowly fading dispersive indoor radio channels. Time-reversal is done by storing each block of received signal samples in a buffer and reversing the sequential order of the signal samples in time prior to equalization. As a result, the equivalent channel impulse response as seen by the equalizer is a time-reverse of the actual channel impulse response. Selective time-reversal operation, therefore, allows a decision feedback equalizer (DFE) with a small number of forward filter taps to perform equally well for both minimum-phase and maximum-phase channel characteristics. The author evaluates the theoretical performance bounds for such a receiver and quantifies the possible performance improvement for discrete multipath channels with Rayleigh fading statistics. Two extreme cases of DFE examples are considered: an infinite-length DFE; and a DFE with a single forward filter tap. Optimum burst and symbol timing recovery is addressed and several practical schemes are suggested. Simulation results are presented. The combined use of equalization and diversity reception is considered  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号