首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Surface nitrite/nitrate redox cycles were proposed to explain light-off behavior that was observed during the decomposition of N2O over Fe-ZSM-5. Further study has demonstrated that while the nitrite/nitrate model can explain the original observations as an isothermal, mechanistic phenomenon, the light-off behavior is thermal, and not a mechanistic effect. Nonetheless, a pathway involving nitrite/nitrate redox cycles appears to be more consistent with experimental observation than the simple two-step pathway involving cation redox cycles. In particular, the nitrite/nitrate pathway can explain the effect of added NO upon the reaction kinetics and the reported isotopic product composition when unlabeled N2O reacts over an oxygen-labeled catalyst. Further, a nitrite/nitrate pathway is consistent with the steady-state kinetics as well as published thermal desorption and infrared spectroscopic results.  相似文献   

2.
Propane aromatization (530°C, 1 atm) was used as a reaction model to evaluate the effect of the calcination temperature on the catalytic properties of an as-synthesized [Ga1.3]-ZSM-5 zeolite obtained from alkali-free media and calcined at two different temperatures: 530°C (C-530) and 750°C (C-750). Results show that in spite of its lower acidity, C-750 is more active and selective toward aromatics than C-530. This is probably due to the fact that at higher temperature the decomposition of organic compounds used during the zeolite synthesis is accompanied by a partial degalliation of the zeolitic support leading to the production of a bifunctional xGa2O3 /H-[Gay-ZSM-5(2x+y=1.3)catalyst.  相似文献   

3.
以RPSA分子筛为载体,采用浸渍法制备了一系列以Co为主活性组分和碱土金属为助剂的CoM/RPSA(M=Mg、Ca、Sr和Ba)催化剂,考察了含硫和含氧条件下直接催化分解N2O的性能。采用X射线衍射、热重-质谱联用系统、NH3-TPD和N2O-TPD等方法对催化剂进行了表征。XRD结果表明,Co物种主要以Co3O4尖晶石形态存在。NH3-TPD和N2O-TPD结果表明,碱土金属的种类影响催化剂酸性和对反应物N2O的吸附-脱附性能,催化剂活性与催化剂酸性及其对反应物N2O的吸附-脱附性能有关。催化剂活性评价结果显示,CoSr/RPSA催化剂的N2O分解活性较好,N2O转化率达到95%时的反应温度为471 ℃。  相似文献   

4.
The detrimental effect of NO on N2O decomposition over zeolite supported noble metal catalysts can be (partly) eliminated by combining noble metal with iron or cobalt. In the presence of NO, the total conversion of N2O over these bimetallic-zeolites exceeds the sum of conversions over the monometallic analogues of the individual components. A synergistic effect between the metals is proposed to be responsible for this phenomenon. This synergistic effect gives superior N2O decomposition activity under realistic conditions, i.e. in the presence of water and NO, at temperatures as low as 350°C. The nature of the synergy is discussed in the light of some preliminary observations.  相似文献   

5.
Isothermal oscillations developed during N2O decomposition over Co-ZSM-5 catalysts with different Si/Al ratios have been investigated. Spontaneous oscillations were observed between 350 and 450 °C. The maximum amplitude has been obtained for the catalysts having Si/Al of 40 and 50. The activation energies of the obtained oscillations were calculated in respect to cobalt concentration. The results showed that the Ea values increase linearly with an increasing Si/Al ratio of the zeolite. For Co-ZSM-5 catalyst (Si/Al = 25), increasing cobalt content in the catalyst led to a decrease in the frequency as well as the amplitude of the oscillations. Meanwhile, the increase in the Ea values was observed. The calculated reaction rate was found to be first order with respect to nitrous oxide concentration. Moreover, the developed oscillations were found to be sensitive to inlet N2O concentration, catalyst weight and milling time duration. Decreasing the N2O inlet concentration as well as the catalyst weight and increasing the milling time would lead to a quenching of the developed oscillations.  相似文献   

6.
The catalytic conversion of N2O to N2 in the presence or the absence of propene and oxygen was studied. The catalysts examined in this work were synthesized impregnating metals (Rh, Ru, Pd, Co, Cu, Fe, In) on different supports (Al2O3, SiO2, TiO2, ZrO2 and calcined hydrotalcite MgAl2(OH)8·H2O). The experimental results varied both with the type of the active site and with the type of the support. Rh and Ru impregnated on -alumina exhibited the highest activity. The performance of the above most promising catalysts was studied using various hydrocarbons (CH4, C3H6, C3H8) as reducing agents. These experimental results showed that the type of reducing agent does not affect the reaction yield. The temperature where complete conversion of N2O to N2 was measured was independent of the reductant type. The activity of the most active catalysts was also measured in the presence of SO2 and H2O in the feed. A shift of the N2O conversion versus temperature curve to higher temperatures was observed when SO2 and H2O were added, separately or simultaneously, to the feed. The inhibition caused by SO2 was attributed to the formation of sulfates and that caused by water to the competitive chemisorption of H2O and N2O on the same active sites.  相似文献   

7.
采用水热法合成了杂原子质量分数均为1.8%的FeAlPO-5和CuAlPO-5分子筛,比较了两者对甲烷催化还原氧化亚氮的催化性能,结果表明,FeAlPO-5分子筛的催化性能优于CuAlPO-5分子筛。通过添加少量贵金属(Ag和Pd)可进一步提高FeAlPO-5分子筛的低温活性,其中,Pd/FeAlPO-5分子筛的低温活性优于Ag/FeAlPO-5分子筛。  相似文献   

8.
AgCl/H-ZSM-5催化分解NO反应及失活机理   总被引:5,自引:2,他引:3  
采用水热分散法制备了AgCl/H-ZSM-5催化剂,并对其催化分解NO的反应进行了研究。运用X-射线衍射(XRD)、固体魔角旋转核磁共振(MASNMR)和能量色散X-射线微区分析(EDAX)对Ag-Cl/H-ZSM-5催化剂进行表征,着重阐明AgCl/H-ZSM-5催化剂在NO分解反应过程中活性相、载体的结构变化与催化分解NO反应活性的关系。  相似文献   

9.
Selective catalytic reduction (SCR) of N2O with C2H6 took place effectively over Fe ion-exchanged BEA zeolite catalyst (Fe-BEA) even in the presence of excess oxygen. The mechanism in the SCR of N2O with C2H6 over Fe-BEA catalyst was studied by a transient response experiment and an in situ DRIFT spectroscopy. No oxidation of C2H6 by O2 took place below 350 °C (in C2H6/O2). In the N2O/C2H6/O2 system, however, it was found that the reaction of C2H6 with O2 was drastically enhanced by the presence of N2O even at low temperatures (200-300 °C). Therefore, it was concluded that N2O played an important role in the oxidation of C2H6 (i.e., activation of C2H6 at an initial step). On the basis of these findings, the mechanism in the SCR of N2O with C2H6 is discussed.  相似文献   

10.
负载型NiO和CoO催化剂上N2O分解研究   总被引:1,自引:0,他引:1  
本研究在对多种金属氧化物催化剂进行初步筛选的基础上,研制出以莫来石为载体的负载型NiO、CoO催化剂,考察了分解温度、催化剂组成和负载量对N2O分解率的影响,并对其分解反应动力学进行了研究。结果表明莫来石负载NiO、CoO催化剂对N2O分解有良好的催化性能;其反应速度对N2O均为一级反应;同样负载量下NiO有更好的催化分解活性;这一研究为开发阻力低、催化性能好的工业用蜂窝型规整填料奠定了基础。  相似文献   

11.
K. Krishna  M. Makkee 《Catalysis Letters》2006,106(3-4):183-193
Fe–ZSM-5 catalysts are prepared by FeCl3 sublimation between 320 and 850 °C. The catalysts are characterised by XRD, H2–TPR, NH3–TPD, NO adsorption by DRIFTs, and catalytic activity is evaluated for N2O decomposition. The influence of high temperature (850 °C) and pretreatment environment (air, He, He+H2O and H2) on the nature of iron species in Fe–ZSM-5 is further investigated by DRIFTs. High temperature FeCl3 sublimation results in decreased FeOx formation, easily reducible and narrow distribution of iron species in close proximity to alumina in Fe–ZSM-5. High temperature FeCl3 sublimation or pretreatment results in isolated hydroxylated iron species, –Fe(OH)2, which are not significant in Fe–ZSM-5 prepared by 320 °C FeCl3 sublimation followed by calcination below 600 °C. Fe–ZSM-5 prepared by high temperature FeCl3 sublimation show high N2O decomposition activity and the improved performance can be correlated to –Fe(OH)2 species in close proximity to alumina.  相似文献   

12.
A series of Cs promoted NiO catalysts have been prepared and tested for direct decomposition of N2O. These catalysts are characterized by BET surface area, X-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed desorption of N2O (TPD-N2O) and X-ray photo electron spectroscopy (XPS). The Cs promoted NiO catalysts exhibit higher activity for the decomposition of N2O compared to bulk NiO. The catalyst with Cs/Ni ratio of 0.1 showed highest activity. The enhancement in catalytic activity of the Cs promoted catalysts is attributed to the change in the electronic properties of NiO. The characterization techniques suggest weakening of Ni–O bond thereby the desorption of oxygen becomes more facile during the reaction. The Cs promoted NiO catalyst is effective at low reaction temperature and also in the presence of oxygen and steam in the feed stream. IICT Communication No: 070523.  相似文献   

13.
Isothermal oscillations in the rate of decomposition of N2O were studied on an over-exchanged Cu-ZSM-5 catalyst by mass spectroscopy and in situ transient FTIR. Oscillations in the production of O2 and N2 were observed to occur in a temperature range of 410–490°C at a total pressure of 1.0 Torr pure N2O. FTIR has provided the first spectroscopic evidence that surface nitrate species are present under oscillatory conditions. This study confirmed a previously proposed model that predicts a slow build-up of surface nitrates, followed by a rapid nitrate decomposition coupled with an increase in the rate of N2O decomposition. The IR signature of the surface nitrates suggests they are monodentate nitrate species bound to Cu2+ ions. Temperature-programmed desorption studies reveal a strong correlation between the stability of the surface nitrate species and the temperature range in which oscillations occur.  相似文献   

14.
Density functional theory (DFT) calculations are employed to study N2O decomposition on relaxed [(SiH3)4AlO4M] (where M = Fe, Co) cluster models representing Fe- and Co-ZSM-5 surfaces and Fe-ZSM-5 channel cluster. The catalytic cycle steps are completed both for Fe- and Co-ZSM-5 clusters. It is found that the general trend of the results obtained is in agreement with experimental and theoretical literature: Co-ZSM-5 has a lower activation energy barrier than Fe-ZSM-5 and O2 desorption step is the rate-limiting step for both clusters. The activation barrier for the decomposition of the first N2O molecule inside a Fe-ZSM-5 channel cluster increases in comparison with that of the cluster model indicating a channel effect on the activation barrier. The activation barrier reported for the channel cluster is 12.63 kcal/mol. This is also in good agreement with experimental literature.  相似文献   

15.
The decomposition of NO and of N2O over a CuZSM-5 zeolite and a Fe-mordenite, respectively, has been studied using tracer techniques. The results demonstrate the high mobility of the lattice oxygen ions in self-diffusion. They afford a possible explanation for the problem of how two extralattice oxygens located at positions remote from each other may combine to form the O2 molecules which are spontaneously desorbed in these redox reactions. They show that a portion of the lattice oxygen mixes into the O2 released on decomposition. The data also show that N18O and N2 18O undergo exchange with the catalyst oxygen under reaction conditions.On leave from Central Research Institute for Chemistry, Hungarian Academy of Sciences, H-1525 Budapest, Hungary.  相似文献   

16.
The decomposition of N2O over an ex-framework FeZSM-5 catalyst is strongly promoted by NO. Activity data show that the promoting effect of NO is catalytic, and that besides NO2, O2 is formed much more extensively in the presence, than in the absence of NO. Transient in situ FT-IR/MS measurements indicate that NO is strongly adsorbed on the catalyst surface up to at least 650 K, showing absorption frequencies at 1884 and 1876 cm–1. A change in gas phase composition from NO to N2O results in the formation of adsorbed NO2, identified by a sharp IR band at 1635 cm–1. Switching back to the original NO gas phase induces a rapid desorption of NO2, restoring the original NO absorption frequencies. During the IR measurements, bands typical of nitro- or nitrate groups were not observed. Multi-Track (a TAP-like technique) experiments show that the presence of NO or NO2 on the catalyst surface significantly enhances the rate of oxygen desorption at the time of N2O exposure to the catalyst. The spectral changes and transient experiments are discussed and catalytic cycles are proposed, to explain the formation of NO2 and the (enhanced) formation of oxygen. The latter can be either explained by an indirect effect (electronic, steric) of NO adsorbed on sites neighboring the active sites, or by a direct effect involving reaction of adsorbed NO2 groups with neighboring oxidized sites yielding O2.  相似文献   

17.
Temperature programmed desorption, FT-IR spectra and hydrolysis of adsorbed oxygen species revealed that a considerable amount of adsorbed peroxide species were formed on CaO by decomposition of N2O, whereas no adsorbed species were formed by molecular oxygen.  相似文献   

18.
The direct hydroxylation of toluene with nitrous oxide to cresol has been studied on two different H[Al]ZSM-5 zeolites with an Si/Al ratio of around 25 and different crystal sizes (30-70 nm and 1-3 m). The samples were activated by calcination and characterized by X-ray diffraction, temperature programmed desorption of ammonia, adsorption of nitrogen and transmission electron microscopy. For the two different crystal sizes, different macroscopic cresol yields and time on stream behaviours are observed. The sample having larger crystals shows a decrease in toluene conversion with increasing reaction temperature. For the smaller crystals an increase in toluene conversion, selectivity to cresol and amount of para-cresol in the cresol fraction with increasing reaction temperature is observed. The para-cresol selectivity is lower on the sample with the longer diffusion path. The findings are explained by product diffusion limitation caused by high reactivity and strong adsorption of the polar product cresol on H[Al]ZSM-5, resulting in a rapid deactivation of the larger crystals.  相似文献   

19.
The catalytic performances of Fe-zeolites having MFI structures and in which the Fe introduced either by ion exchange or during the hydrothermal synthesis has undergone partial framework to extra-framework migration induced by controlled heat treatment are reported. In particular, the catalytic behavior as function of time-on-stream and the formation of carbonaceous species were studied. The results suggest that only a small fraction of the iron is active in the selective oxidation of benzene to phenol in the presence of N2O. It is suggested that the active fraction is formed by isolated iron ions in a pseudo-octahedral configuration with the sites positioned in hydroxyl nests (defects) of the zeolite and is selective in phenol formation as a result of in situ reduction during the catalytic tests. Two possible pathways of carbonaceous species were identified, the first through the intermediate further hydroxylation of phenol and the second through the coupling of phenol with benzene or another phenol molecule. This second pathway is the dominant mechanism of formation of carbonaceous species, although the relative rate of the two pathways depends on the zeolite characteristics and iron loading. It is also suggested that the second pathway depends on the strong chemisorption of phenol, probably on Lewis acid sites, which hinders the fast back-desorption of phenol out from the zeolite channels and thus favors the formation of carbonaceous species. Catalysts prepared by hydrothermal treatment show a lower rate of deactivation than those prepared by ion exchange, although the latter show a comparable productivity to phenol for amounts of iron in extra-framework positions around 20 to 30 times lower. The results also indicate that the presence of Al in the zeolite framework is beneficial for reducing the rate of deactivation as compared to that of Fe-silicalite samples.  相似文献   

20.
本文报导含类立方烷型簇核Fe4s4的金硫配位化合物[(C2H5)4N]2{Fe4S4[S2CN(C2H5)2]4}的合成、晶体和分子结构测定的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号