首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The optimization of the deposition process of n-type Bismuth Telluride and p-type Antimony Telluride thin films for thermoelectric applications is reported. The films were deposited on a 25 μm-thick flexible polyimide (kapton) substrate by co-evaporation of Bi and Te, for the n-type element, and Sb and Te, for the p-type element. The evaporation rate of each material was monitorized by an oscillating crystal sensor and the power supplied to each evaporation boat was controlled with a PID algorithm in order to achieve a precise user-defined constant evaporation rate.The influence of substrate temperature (in the range 240-300 °C) and evaporation rates of Bi, Te and Sb on the electronic properties of the films was studied and optimized to obtain the highest Seebeck coefficient. The best n-type Bi2Te3 films were deposited at 300 °C with a polycrystalline structure, a composition close to stoichiometry, electrical resistivity ∼20 μΩ m and Seebeck coefficient −195 μV/°C. The best p-type Sb2Te3 films were deposited at 240 °C, are slightly Te-rich, have electrical resistivity ∼20 μΩ m and Seebeck coefficient +153 μV/°C. These high Seebeck coefficients and low electrical resistivities make these materials suitable for fabrication of Peltier coolers and thermopile devices.  相似文献   

2.
N-type bismuth telluride (Bi2Te3) thermoelectric thin films were deposited on BK7 glass substrates by ion beam sputtering method. Various substrate temperatures were tried to obtain optimal thermoelectric performance. The influence of deposition temperature on microstructure, surface morphology and thermoelectric properties was investigated. X-ray diffraction shows that the films are rhombohedral with c-axis as the preferred crystal orientation when the deposition temperature is above 250 °C. All the films with single Bi2Te3 phase are obtained by comparing X-ray diffraction and Raman spectroscopy. Scanning electron microscopy result reveals that the average grain size of the film is larger than 500 nm when the deposition temperature is above 300 °C. Thermoelectric properties including Seebeck coefficient and electrical conductivities were measured at room temperature, respectively. It is found that Seebeck coefficients increase from − 28 μV k− 1 to − 146 μV k− 1 and the electrical conductivities increase from 1.87 × 103 S cm− 1 to 3.94 × 103 S cm− 1 when the deposition temperature rose to 250 °C and 300 °C, respectively. An optimal power factor of 6.45 × 10− 3 Wm− 1 K− 2 is gained when the deposition temperature is 300 °C. The thermoelectric properties of bismuth telluride thin films have been found to be strongly enhanced by increasing the deposition temperature.  相似文献   

3.
Improved thermoelectric performance of highly-oriented nanocrystalline bismuth antimony telluride thin films is described. The thin films are deposited by a flash evaporation method, followed by annealing in hydrogen. By optimizing the annealing conditions, the resulting thin films exhibit almost perfect orientation with the c-axis normal to the substrate, and are composed of nano-sized grains with an average grain size of 150 nm. The in-plane electrical conductivity and Seebeck coefficient were measured at room temperature. The cross-plane thermal conductivity of the thin films was measured by a 3ω method, and the in-plane thermal conductivity was evaluated by using an anisotropic factor of thermal conductivity based on a single crystal bulk alloy with almost the same composition and carrier concentration. The measured cross-plane thermal conductivity is 0.56 W/(m K), and the in-plane thermal conductivity is evaluated to be 1.05 W/(m K). Finally, the in-plane power factor and figure-of-merit, ZT, of the thin films are 35.6 μW/(cm K2) and 1.0 at 300 K, respectively.  相似文献   

4.
Non-polar ZnO thin films were fabricated on r-plane sapphire substrates by pulsed laser deposition at various temperatures from 100 to 500 °C. The effects of the substrate temperature on structural, morphological and optical properties of the films were investigated. Based on the X-ray diffraction analysis, the ZnO thin films grown at 300, 400 and 500 °C exhibited the non-polar (a-plane) orientation and those deposited below 300 °C exhibited polar (c-plane) orientation. In the optical properties of non-polar ZnO films, there were two photoluminescence peaks detected. The peaks (near-band edge emission, blue emission) are due to electron transitions from band-to-band and shallow donor level to valence band, respectively.  相似文献   

5.
X.K. Duan  Y.Z. Jiang 《Thin solid films》2011,519(10):3007-3010
(Bi1 − xSnx)2Te2.7Se0.3 thermoelectric thin films with thickness of 800 nm have been deposited on glass substrates by flash evaporation method at 473 K. The structures, morphology of the thin films were analyzed by X-ray diffraction and field emission scanning electron microscopy respectively. Effects of Sn-doping concentration on thermoelectric properties of the annealed thin films were investigated by room-temperature measurement of Seebeck coefficient and electrical resistivity. The thermoelectric power factor was enhanced to 12.8 μW/cmK2 (x = 0.003). From x = 0.004 to 0.01 Sn doping concentration, the Seebeck coefficients are positive and show p-type conduction. The Seebeck coefficient and electrical resistivity gradually decrease with increasing Sn doping concentration.  相似文献   

6.
Preparation and characterization of ceramic thin film thermocouples   总被引:3,自引:0,他引:3  
Indium tin oxide (ITO), alumina doped zinc oxide (ZnO) and NiCrCoAlY/alumina nanocomposites were systematically investigated as thermoelements. These ceramic thermoelements were initially tested relative to a platinum reference electrode and the resulting thermoelectric properties were evaluated. Bi-ceramic junctions comprised of the most stable and responsive ceramic thermoelements, i.e. those thermoelements with the largest and most stable Seebeck coefficients relative to platinum, were fabricated and tested. A bi-ceramic junction based on nitrogen-doped ITO:oxygen-doped ITO exhibited excellent high temperature stability and reproducibility, however, this thermocouple pair had a relatively low Seebeck coefficient (6 μV/°C). Alumina doped ZnO:ITO thermocouples generated a very large electromotive force at low temperatures but lacked high temperature stability. When nitrogen-doped ITO was combined with a NiCoCrAlY/alumina nanocomposite, a very large and stable Seebeck coefficient (375 μV/°C) was realized. Ceramic thermocouples based on several candidate materials were demonstrated at temperatures up to 1200 °C and the potential of using these materials in other thermoelectric devices including those for energy harvesting is discussed.  相似文献   

7.
Pulsed laser deposition (PLD) is one of the promising techniques for depositing cadmium telluride (CdTe) thin films. It has been reported that PLD CdTe thin films were almost deposited at the lower substrate temperatures (<300 °C) under vacuum conditions. However, the poor crystallinity of CdTe films prepared in this way renders them not conducive to the preparation of high-efficiency CdTe solar cells. To obtain high-efficiency solar cell devices, better crystallinity and more suitable grain size are needed, which requires the CdTe layer to be deposited by PLD at high substrate temperatures (>400 °C). In this paper, CdTe layers were deposited by PLD (KrF, λ = 248 nm, 10 Hz) at different higher substrate temperatures (Ts). Excellent performance of CdTe films was achieved at higher substrate temperatures (400 °C, 550 °C) under an atmosphere of Ar mixed with O2 (1.2 Torr). X-ray diffraction analysis confirmed the formation of CdTe cubic phase with a strong (1 0 0) preferential orientation at all substrates temperatures on 60 mJ laser energy. The optical properties of CdTe were investigated, and the band gaps of CdTe films were 1.51 eV and 1.49 eV at substrate temperatures of 400 °C and 550 °C, respectively. Scanning electron microscopy (SEM) showed an average grain size of 0.3–0.6 μm. Thus, under these conditions of the atmosphere of Ar + O2 (15 Torr) and at the relatively high Ts (500 °C), an thin-film (FTO/PLD-CdS (100 nm)/PLD-CdTe (~1.5 μm)/HgTe: Cu/Ag) solar cell with an efficiency of 6.68% was fabricated.  相似文献   

8.
The thermoelectric properties of ZnSb thin film prepared by screen printing technique are investigated, aiming to achieve a low-cost and eco-friendly thermoelectric power generator module. The printed ZnSb thin film, annealed at 580 °C in a furnace tube achieves a power factor of 1.06 mW/mK2 and a Seebeck coefficient of 109 μV/K. The output power density is 0.22 mW/cm2 at ΔT = 70 K. The feasibility of a flexible thermoelectric module using the screen printing technique is also demonstrated.  相似文献   

9.
Lead germanate-silicate (Pb5Ge2.85Si0.15O11) ferroelectric thin films were successfully fabricated on Pt/Ti/SiO2/(100)Si substrates by the sol-gel process. The thin films were fabricated by multi-coating at preheating temperatures of 350 and 450 °C. After annealing the thin films at 600 °C, the films exhibited c-axis preferred orientation. The degree of c-axis preferred orientation of the thin films preheated at 350 °C was higher than that of films preheated at 450 °C. Grain growth was influenced by the annealing time. The thin films exhibited a well-saturated ferroelectric P-E hysteresis loop when preheated at 350 °C and annealed at 600 °C for 1.5 h. The values of the remanent polarization (Pr) and the coercive field (Ec) were approximately 2.1 μC/cm2 and 100 kV/cm, respectively.  相似文献   

10.
CuInSe2 (CIS) thin films were prepared by ion beam sputtering deposition of copper layer, indium layer and selenium layer on BK7 glass substrates followed by annealing at different temperatures for 1 h in the same vacuum chamber. The influence of annealing temperature (100-400 °C) on the structural, optical and electrical properties of CIS thin films was investigated. X-ray diffraction (XRD) analysis revealed that CIS thin films exhibit chalcopyrite phase and preferential (112) orientation when the annealing temperature is over 300 °C. Both XRD and Raman show that the crystalline quality of CIS thin film and the grain size increase with increasing annealing temperature. The reduction of the stoichiometry deviation during the deposition of CIS thin films is achieved and the elemental composition of Cu, In and Se in the sample annealed at 400 °C is very near to the stoichiometric ratio of 1:1:2. This sample also has an optical energy band gap of about 1.05 eV, a high absorption coefficient of 105 cm−1 and a resistivity of about 0.01 Ω cm.  相似文献   

11.
Low-temperature atomic layer deposition (ALD) processes are intensely looked for to extend the usability of the technique to applications where sensitive substrates such as polymers or biological materials need to be coated by high-quality thin films. A preferred film orientation, on the other hand, is often required to enhance the desired film properties. Here we demonstrate that smooth, crystalline ZnO thin films can be deposited from diethylzinc and water by ALD even at room temperature. The depositions were carried out on Si(100) substrates in the temperature range from 23 to 140 °C. Highly c-axis-oriented films were realized at temperatures below ~ 80 °C. The film crystallinity could be further enhanced by post-deposition annealing under O2 or N2 atmosphere at 400-600 °C while keeping the original film orientation intact.  相似文献   

12.
Extremely smooth iridium (Ir) thin films were deposited on Si(1 0 0) substrate at lower temperature than 300 °C by pulsed laser deposition (PLD) technique using Ir target in a vacuum atmosphere. The crystal orientation, surface morphology, and resistivity of the Ir thin films were systematically determined as a function of substrate temperature. Well-crystallized and single-phase Ir thin films with (1 1 1) preferred orientation were obtained at substrate temperature of 200-300 °C. The surface roughness increased with the increasing of substrate temperature. Likewise, the room-temperature resistivity of Ir thin films decreased with increasing substrate temperature, showing a low value of (10.7±0.1) μΩ cm at 300 °C.  相似文献   

13.
The phosphorus doped n-type hydrogenated microcrystalline silicon (n-μc-Si:H) thin films are prepared, at the two low substrate temperatures of room temperature and 200 °C, through a low-frequency inductively coupled plasma assisted chemical vapor deposition. The effect of the substrate temperature on the structural properties of the thin films, such as the X-ray Diffraction (XRD) patterns and the Raman spectra, is studied. The XRD measurements show that the diffraction orientations of the thin films present an obvious change when the radio frequency power is increased from 1300 W to 2300 W. The Raman spectra of the thin films deposited at room temperature unambiguously present a phase transition from the amorphous structure to microcrystalline structure whereas no structural phase transition is observed for the thin films deposited at 200 °C. The effect of the substrate temperature on the crystalline volume fraction of the thin films presents a large difference for the radio frequency power in the range of 1300 W-1700 W, while the difference becomes small when the power is increased from 1700 W to 2300 W. The deposition rate and the radio frequency power-sheet resistance curve of the thin films deposited at room temperature are obviously different from those of the thin films prepared at 200 °C. It is attributed to the joint effect of the radio frequency power and substrate temperature on the doping concentration. The electron energy distribution function of the species in the chamber is mainly distributed in a low energy range.  相似文献   

14.
This paper deals with the performance study of nanocrystalline thin film thermocouples (TFTCs) fabricated using anodic vacuum arc plasma aided deposition technique. Various single junction single elemental metal-metal pairs, elemental metal-metal alloy pairs, and metal alloy-metal alloy pairs were developed on glass substrates Elemental metal films were annealed at 10− 4 Pa for 4 h while metal alloy films were annealed for 5 h. Their thermoelectric response has been studied in ambient air up to a maximum temperature difference of 300 °C between hot junction and cold junction. The phase purity, microstructure and composition of individual layer films were extensively studied. Elemental metal pairs agree well with their wire thermocouple equivalents. Thermoelectric power (TEP) of Cu-Ni and Fe-Ni TFTCs were found to be 17.81 μV/°C and 27.94 μV/°C at 300 °C, respectively. Among metal alloy-metal alloy TFTCs, a TEP of 32.87 μV/°C at 300 °C was obtained for Chromel-Alumel TFTCs which agree fairly well with its wire counterpart. However, Constantan based TFTCs deviated considerably from their wire counterparts. Cu-Constantan, Fe-Constantan and Chromel-Constantan showed a TEP of 26.48 μV/°C, 35.76 μV/°C and 37.41 μV/°C at 300 °C respectively. This deviation in thermoelectric power of Constantan based TFTCs with their wire counterparts were due to the fractionation of the Constantan arm. This fractionation leads to decrease of Ni content in the film which in turn reduces their TEP.  相似文献   

15.
Keng-Shuo Wu 《Thin solid films》2008,516(12):3808-3812
Bismuth thin films were grown by pulsed-laser deposition on glass substrates with the substrate temperature from − 40 °C to 200 °C. The structure of the films was characterized by X-ray diffraction. The surface morphology was studied by atomic force microscopy and X-ray reflectivity. The electrical properties of the films were probed by Hall and van der Pauw measurements. We observed changes in the orientation, grain size and roughness of the bismuth films as a function of the substrate temperature. In particular, at − 30 °C, the surface roughness was drastically reduced, leading to very smooth bismuth films with highly (111)-preferred orientation. Furthermore, the preferred orientation disappeared at around − 40 °C.  相似文献   

16.
ZnO:Al nano-polycrystalline thin films were deposited by radio-frequency magnetron sputtering on glass substrates. The analysis of the morphology reveals well-connected whiskers with a preferred c-axis orientation perpendicular to the substrate and a dense columnar grain structure. The as-deposited films exhibited a low electrical resistivity of 1 × 10− 3 Ω cm. Annealing in air produces an increase of the resistivity by more than three orders of magnitude and an increase in the absolute value of the Seebeck coefficient proportional to the resistivity. Annealing of the as-deposited sample in reducing Ar/H2 atmosphere leads to a decrease in both the resistivity and the absolute value of the Seebeck coefficient. The change in the electrical transport properties is caused by the absorption and desorption of oxygen. Both resistivity and Seebeck coefficient recover to their initial values during annealing of the air-treated sample in reducing Ar/H2 atmosphere, indicating a reversible process. The analysis by transmission electron microscopy after annealing reveals a stable columnar grain structure with an increase of the grain size. The increase in grain size is larger when the sample is annealed in reducing rather than in oxidising atmosphere. In summary, the reducing Ar/H2 atmosphere was found to be advantageous for the thermoelectric properties resulting in a maximum power factor of 0.3 mW/K2m at 800 K.  相似文献   

17.
The thermoelectric properties of boron-doped silicon microchannel plates (MCPs) were investigated. The samples were prepared by photo-assisted electrochemical etching (PAECE). The Seebeck coefficient and electrical resistivity at room temperature (25 °C) were measured to determine the thermoelectric properties of the samples. In order to decrease the very high resistivity, boron doping was introduced and by modulating the doping time, a series of samples with different resistivity as well as Seebeck coefficient were obtained. Boron doping changed the electrical resistivity of the samples from 1.5 × 105 Ω cm to 5.8 × 10−3 Ω cm, and the absolute Seebeck coefficient deteriorated relatively slightly from 674 μV/K to 159 μV/K. According to the Seebeck coefficient and electrical conductivity, the power factor was calculated and a peak value of 4.7 × 10−1 mW m−1 K−2 was obtained. The results indicate that silicon MCPs doped with boron are promising silicon-based thermoelectric materials.  相似文献   

18.
P-type Bi-Sb-Te-Se thermoelectric thin films with thickness of 8 μm have been prepared by cathodic electrodeposition technique on Au substrate from nitric acid solution system at room temperature. Cyclic voltammetry was used for determination of the deposition potentials of the thin films. In order to enhance the crystallinity, as well as the thermoelectric properties of the deposited films, they were annealed at 523 K for 2 h under nitrogen atmospheric pressure condition. X-ray diffraction (XRD), environmental scanning electron microscopy, and energy-dispersive spectroscopy (EDS) were employed to characterize the thin films. Seebeck coefficients and resistivities of the films were also evaluated. The results revealed that Bi, Sb, Te and Se could be co-deposited to form Bi-Sb-Te-Se semiconductor compound in the solution containing BiIII, SbIII, TeIV and SeIV and the compositions of the films were sensitive to the electrodepositing potentials. The XRD results suggested that the crystal structure of the thin films were changed from amorphous state to polycrystalline after annealing. The EDS data indicated that the composition of the films was consistent with XRD results. The annealed Bi-Sb-Te-Se thin films exhibited the Seebeck coefficients of 116-133 μV/K and a maximum power factor of 0.62 mW·K− 2·m− 1.  相似文献   

19.
Transmission electronic microscopy is used to study the structure, morphology and orientation of thin TiO2 films prepared by reactive magnetron sputtering on glass slides at different substrate temperatures (100 to 400 °C). The TiO2 films are used to purify a dye in waste water. The microstructure and photocatalytic reactivity of TiO2 films have been shown to be functions of deposition temperature. In the temperature range examined, all film samples have a porous nanostructure and the dimension of particles grown with increasing deposition temperature. Films are amorphous at temperatures of 100 °C and only anatase phase forms at 200 °C and above. Films deposited between 200 to 300 °C show a preferred orientation, while films at 400 °C change into complete random orientation. Deposition at 250 °C yields high efficiency in photocatalytic degradation owing to the high degree of preferred orientation and nanocrystalline/nanoporous anatase phase. © 1998 Kluwer Academic Publishers  相似文献   

20.
Presented in this study are crystalline structure and mechanical properties of FePt0.75Pd0.25 ternary alloy thin films deposited under the various annealing temperatures, obtained by means of transmission electron microscopy (TEM) and nanoindentation techniques. FePtPd ternary alloy thin films are deposited on Si substrates using a multi-target DC magnetron sputtering system. Results indicate that the grain size increase from 40 to 135 nm as the annealing temperature increases from 400 to 600 °C. From nanoindentation measurements, the hardness of FePtPd ternary alloy thin films are 11.6 ± 0.4, 10.4 ± 0.1 and 8.8 ± 0.3 GPa for the annealed temperatures of 400, 500 and 600 °C, respectively. And, the corresponding Young's moduli are 175.4, 152.2 and 142.6 GPa, respectively. Hardness for FePtPd ternary alloy thin films decreased slightly in accordance with the increase of the grain size. By fitting experimental results with the Hall-Petch equation, a probable lattice friction stress of 5.15 ± 0.05 GPa and Hall-Petch constant of 44.25 ± 2.55 GPa nm1/2 are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号