共查询到20条相似文献,搜索用时 15 毫秒
1.
F. Magnus A.S. Ingason O.B. Sveinsson S. Olafsson J.T. Gudmundsson 《Thin solid films》2011,520(5):1621
Thin TiN films were grown on SiO2 by reactive high power impulse magnetron sputtering (HiPIMS) at a range of temperatures from 45 to 600 °C. The film properties were compared to films grown by conventional dc magnetron sputtering (dcMS) at similar conditions. Structural characterization was carried out using X-ray diffraction and reflection methods. The HiPIMS process produces denser films at lower growth temperature than does dcMS. Furthermore, the surface is much smoother for films grown by the HiPIMS process. The [200] grain size increases monotonically with increased growth temperature, whereas the size of the [111] oriented grains decreases to a minimum for a growth temperature of 400 °C after which it starts to increase with growth temperature. The [200] crystallites are smaller than the [111] crystallites for all growth temperatures. The grain sizes of both orientations are smaller in HiPIMS grown films than in dcMS grown films. 相似文献
2.
Sn-doped In2O3 (ITO) films were deposited on heated (200 °C) fused silica glass substrates by reactive DC sputtering with mid-frequency pulsing (50 kHz) and a plasma control unit combined with a feedback system of the optical emission intensity for the atomic O* line at 777 nm. A planar In-Sn alloy target was connected to the switching unit, which was operated in the unipolar pulse mode. The power density on the target was maintained at 4.4 W cm− 2 during deposition. The feedback system precisely controlled the oxidation of the target surface in “the transition region.” The ITO film with lowest resistivity (3.1 × 10− 4 Ω cm) was obtained with a deposition rate of 310 nm min− 1 and transmittance in the visible region of approximately 80%. The deposition rate was about 6 times higher than that of ITO films deposited by conventional sputtering using an oxide target. 相似文献
3.
Alumina (Al2O3) thin films were sputter deposited over well-cleaned glass and Si < 100 > substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 °C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance, AC conductivity and activation energy were determined and the results are discussed. 相似文献
4.
Y. MutoS. Nakatomi N. OkaY. Iwabuchi H. KotsuboY. Shigesato 《Thin solid films》2012,520(10):3746-3750
Ta-doped SnO2 films were deposited on glass substrate (either unheated or heated at 200 °C) by reactive magnetron sputtering with a Sn-Ta metal-sintered target using a plasma control unit (PCU) and mid-frequency (mf, 50 kHz) unipolar pulsing. The PCU feedback system precisely controlled the flow of the reactive and sputtering gases (O2 and Ar, respectively) by monitoring either discharge impedance or the plasma emission of the atomic O* line at 777 nm. The planar target was connected to the switching unit, which was operated in unipolar pulse mode. Power density on the target was maintained at 4.4 W cm− 2 during deposition. The lowest obtained resistivity for the films deposited on heated substrate was 6.4 × 10− 3 Ωcm, where the deposition rate was 250 nm min− 1. 相似文献
5.
Nanocrystalline SnO2 and Au:SnO2 thin films prepared by direct current magnetron reactive sputtering
Nanocrystalline pure and gold doped SnO2(Au:SnO2) films were prepared on unheated glass substrates by dc magnetron reactive sputtering and, subsequently, the as deposited films were annealed in air. The films structure, surface morphology, photoluminescence, electrical and optical properties were investigated. After annealing the as deposited SnO2 films, crystallinity increased and the surface roughness decreased. The intensity of PL peaks increases sharply with the annealing temperature. The optical transmittance of the films was around 89% after annealing the as deposited SnO2 films at 450 °C. The as deposited Au:SnO2 films show better crystallinity than the as deposited SnO2 films, the average grain size was around 4.4 nm. The emission peaks of Au:SnO2 films are slightly blue shifted as compare to undoped SnO2 films. The Au:SnO2 films show the lowest electrical resistivity of 0.001 Ωcm with optical transmittance of 76%, after annealing at 450 °C. 相似文献
6.
Wang Haiping Wu Weidong Lu Tiecheng Wang Xuemin Cao Linhong Dai Yang 《Materials Letters》2010,64(3):320-322
Lithium borohydride (LiBH4) films were first fabricated under low hydrogen pressure (5-70 Pa) at ambient temperature by pulsed laser deposition (PLD). The atomistic structures and chemical compositions of the films were investigated. It was found that during the formation process of LiBH4, the intermediate compound Li2B12H12 was formed. As the hydrogen pressure increased up to 70 Pa, the relative weight percent of LiBH4 was over 70 wt.% even at ambient temperature. Moreover, the stress of the films was decreased as the hydrogen pressure increased. 相似文献
7.
Cerium oxide films of thickness 0.1–300 μm were deposited on Ni substrates via cathodic electrolytic and electrophoretic deposition. The films were studied by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. Experimental results obtained by both deposition methods are compared. The influence of deposition parameters and additives on deposition yields and film morphologies is studied and discussed. 相似文献
8.
9.
Michio Mikawa Toshihiro Moriga Yukinori Misaki Ichiro Nakabayashi 《Materials Research Bulletin》2005,40(6):1052-1058
Transparent conducting oxide (TCO) films in the ZnO-In2O3 system were prepared by a pulsed laser deposition method. A target that consists of the mixture of ZnO and In2O3 powders was used. Influences of the target composition x (x = [Zn]/([Zn] + [In])) and heater temperature on structural, electrical and optical properties of the TCO films were examined. Introduction of oxygen gas into the chamber during the deposition was necessary for improvement in the transparency of the deposited films. The amorphous phase was observed for a wide range of x = 0.20-0.60 at 110 °C. Minimum resistivity was 2.65 × 10−4 Ω cm at x = 0.20. The films that showed the minimum resistivity had an amorphous structure and the composition shifted toward larger x, as the substrate temperature increased. The films were enriched in indium compared to the target composition and the cationic In/Zn ratio increased as the substrate temperature was increased. 相似文献
10.
A plasma assisted reactive pulsed laser deposition process was demonstrated for low-temperature deposition of thin hafnia (HfO2) and zirconia (ZrO2) films from metallic hafnium or zirconium with assistance of an oxygen plasma generated by electron cyclotron resonance microwave discharge. The structure and the interface of the deposited films on silicon were characterized by means of Fourier transform infrared spectroscopy, which reveals the monoclinic phases of HfO2 and ZrO2 in the films with no interfacial SiOx layer between the oxide film and the Si substrate. The optical properties of the deposited films were investigated by measuring the refractive indexes and extinction coefficients with the aid of spectroscopic ellipsometry technique. The films deposited on fused silica plates show excellent transparency from the ultraviolet to near infrared with sharp ultraviolet absorption edges corresponding to direct band gap. 相似文献
11.
Sébastien Saitzek Frédéric Guinneton Laurent Sauques Jean-Raymond Gavarri 《Thin solid films》2008,516(6):891-897
Thermochromic VO2 thin films presenting a phase change at Tc = 68 °C and having variable thickness were deposited on silicon substrates (Si-001) by radio-frequency sputtering. These thin films were obtained from optimized reduction of low cost V2O5 targets. Depending on deposition conditions, a non-thermochromic metastable VO2 phase might also be obtained. The thermochromic thin films were characterized by X-ray diffraction, atomic force microscopy, ellipsometry techniques, Fourier transform infrared spectrometry and optical emissivity analyses. In the wavelength range 0.3 to 25 μm, the optical transmittance of the thermochromic films exhibited a large variation between 25 and 100 °C due to the phase transition at Tc: the contrast in transmittance (difference between the transmittance values to 25 °C and 100 °C) first increased with film thickness, then reached a maximum value. A model taking into account the optical properties of both types of VO2 film fully justified such a maximum value. The n and k optical indexes were calculated from transmittance and reflectance spectra. A significant contrast in emissivity due to the phase transition was also observed between 25 and 100 °C. 相似文献
12.
BiFeO3 nanoparticles were prepared by a wet chemical synthesis method. Transparent films were deposited on glass and quartz substrates by dip and spin coating processes from the synthesized sol. We obtained thicker films (~ 2 µm) by dip coating process and thinner films (~ 200 nm) by spin coating process. Transmission electron microscopy images confirmed that the particles are nanocrystalline in size. From the optical transmittance spectra the band gap of the BiFeO3 nanoparticles was determined in the range of ~ 3.03-2.88 eV (~ 410-430 nm). Electrical resistivity, polarization, zero-field-cooled and field-cooled magnetizations versus temperature characteristics were also studied for these films. 相似文献
13.
Fe-O thin films with different atomic ratio of iron to oxygen were deposited on glass and thermally oxidized silicon substrates at temperatures of 300, 473 and 593 K, by reactive magnetron sputtering in Ar+O2 atmosphere. The composition and structure of the thin films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrical resistivity. It was found from XRD that with increasing the oxygen partial pressure in the working gas, the crystalline structure of the Fe-O films deposited at the substrate temperature of 473 K gradually changed from α-Fe, amorphous Fe-O, Fe3O4, γ-Fe2O3 to Fe21.34O32. The structure and chemical valence of the Fe3O4 films were analyzed by electron microscopy and XPS, respectively. 相似文献
14.
Ag-TiO2 nanostructured thin films with silver volume fraction of 0–40% were prepared by RF magnetron sputtering. The microstructure, surface topography, and optical properties of the films were characterized by X-ray diffractometer, transmission electron microscope, and ultraviolet–visible spectrophotometer. Photocatalytic activity of the films was evaluated by light-induced degradation of methyl orange (C14H14N3NaO3S) solution using a high pressure mercury lamp as lamp-house. The relation of photocatalytic activity and silver content was studied in detail. It is found that silver content influences microstructure of TiO2 thin films, and silver in the films is metallic Ag (Ag0). Photocatalytic activity of the films increases with increasing silver content up to 5 vol.% Ag and then decreases to values significantly still bigger than that of pure TiO2 thin films. Silver nanoparticles significantly enhance the photocatalytic activity of TiO2 films. The better separation between electrons and holes on silver modified TiO2 thin films surface allowed more efficiency for the oxidation and reduction reactions. The enhanced photocatalytic activity was mainly attributed to the decrease of energy gap of the films and the increase of oxygen anion radicals O2− and reactive center of surface Ti3+ on silver modified TiO2 thin films surface. 相似文献
15.
By radiofrequency magnetron sputtering co-deposition we synthesized Er:SiO2 film 0.5 μm thick on silica substrates, with Er content < 0.3 atomic %. By changing the preparation condition (during deposition we have used an additional negative bias voltage applied to the substrates for inducing a low-energy ion bombardment, with or without a contemporary heating) and by varying the thermal treatment after the synthesis (the best conditions were 1 h in the range 700-800 °C, in air) we have obtained an Er:SiO2 system with an intense photoluminescence emission at λ = 1.54 μm. The best-performing Er:SiO2 samples obtained by sputtering have shown a photoluminescence response comparable to that of the typical Er:SiO2 thin film systems obtained by conventional techniques used in applicative framework. 相似文献
16.
G. Balakrishnan P. Kuppusami S. Murugesan C. Ghosh R. Divakar E. Mohandas D. Sastikumar 《Materials Chemistry and Physics》2012
Microstructural characterization of pulsed laser deposited Al2O3/ZrO2 multilayers on Si (1 0 0) substrates at an optimized oxygen partial pressure of 3 × 10−2 mbar and at room temperature (298 K) has been carried out. A nanolaminate structure consisting of alternate layers of ZrO2 and Al2O3 with 40 bi-layers was fabricated at different zirconia layer thicknesses (20, 15 and 10 nm). The objective of the work is to study the effect of ZrO2 layer thickness on the stabilization of tetragonal ZrO2 phase for a constant Al2O3 layer thickness of 5 nm. The Al2O3/ZrO2 multilayer films were characterized using high temperature X-ray diffraction (HTXRD) in the temperature range 298–1473 K. The studies showed that the thickness of the zirconia layer has a profound influence on the crystallization temperature for the formation of tetragonal zirconia phase. The tetragonal phase content increased with the decrease of ZrO2 layer thickness. The cross-sectional transmission electron microscope (XTEM) investigations were carried out on a multilayer thin films deposited at room temperature. The XTEM studies showed the formation of uniform thickness layers with higher fraction of monoclinic and small fraction of tetragonal phases of zirconia and amorphous alumina. 相似文献
17.
The Cu2O thin films were prepared on quartz substrate by reactive direct current magnetron sputtering. The influences of oxygen partial pressure and gas flow rate on the structures and properties of deposited films were investigated. Varying oxygen partial pressure leads to the synthesis of Cu2O, Cu4O3 and CuO with different microstructures. At a constant oxygen partial pressure of 6.6 × 10− 2 Pa, the single Cu2O films can be obtained when the gas flow rate is below 80 sccm. The as-deposited Cu2O thin films have a very high absorption in the visible region resulting in the visible-light induced photocatalytic activity. 相似文献
18.
Nigel Van de Velde Melis ArinPetra Lommens Dirk PoelmanIsabel Van Driessche 《Thin solid films》2011,519(11):3475-3479
This article summarizes our progress made on an aqueous chemical solution deposition method used for the deposition of photocatalytically active TiO2 thin films. Starting from Titanium(IV)butoxide we achieved a stable titanium precursor solution containing titanium-peroxo compounds by reaction between Titanium(IV)butoxide and hydrogen peroxide. We were able to deposit anatase TiO2 films with good optical transparency and abrasion resistance. Dip-coating was used to deposit thin films on glass substrates from the solution. The occurring reaction mechanism was examined via thermal analysis, mass spectrometry and Raman spectroscopy. Decomposition of organic polluents was confirmed by the breakdown of ethanol. The obtained results show promising possibilities of this low-carbon containing synthesis method towards transparent, photocatalytic coatings. Presence of carbon was minimized by avoiding organic complexing agents. These materials are of great importance in the synthesis of self-cleaning materials. 相似文献
19.
ZnO:Al network films were grown on nanochannel Al2O3 substrates at 300 K by direct current magnetron sputtering with an oblique target. The film thicknesses are 60 nm, 160 nm and 190 nm. The holes of the network films diminish with increasing film thickness. For the 60-nm thick film, the network is formed by connecting grains. For the 160-nm and 190-nm thick films, however, the network is formed by connecting granules. The granules consist of many small grains. All the network films have a wurtzite structure. The 60-nm and 160-nm thick network films mainly have a [1 0 1] orientation in the film growth direction while the 190-nm thick network film grows with a random crystallographic orientation. A temperature dependence of the resistance within 160–300 K reveals that the network films exhibit a semiconducting behavior and their carrier transport mechanism is thermally activated band conduction. Room temperature photoluminescence spectra for wavelengths between 300 nm and 700 nm reveal a violet emission centered at 405 nm for the 60-nm thick network film and a blue emission centered at 470 nm for both the 160-nm and the 190-nm thick network films. Annealing decreases the resistivity of the network film. 相似文献
20.
Kota Fukaya Koichi Sasaki Taishi Kimura Masumi Inoue Hideo Sugai 《Thin solid films》2009,517(8):2762-2766
We correlated the crystallinity of YBaCuO films prepared by magnetron sputtering deposition using Ar/O2 mixture gas with the atomic and molecular composition in the gas phase. YBaCuO films were deposited on MgO substrates at 670 °C. Two-dimensional distributions of Y, Ba, Cu, YO, BaO, and CuO densities and one-dimensional distribution of O density were measured by laser-induced fluorescence spectroscopy. The Y and Ba densities decreased significantly with the increase of the O2 partial pressure, and they were below the detection limit at an O2 flow ratio of 10% and a total gas pressure of 53 Pa. The decrease in the Y and Ba densities was compensated by an increase in the YO and BaO densities. The decrease in the Cu density with the increase of the O2 partial pressure was less significant, while the CuO density was below the detection limit at all the discharge conditions. The O density was evaluated to be 1012-1013 cm− 3, which was much higher than the Cu density. On the other hand, YBaCuO films with high crystallinity were obtained at total gas pressures of 53-80 Pa and O2 flow ratios of 50-70%. Therefore, it is concluded that the precursors for the deposition of YBaCuO films with high crystallinity are Cu, YO, BaO, and O. 相似文献