首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of CH2F2 and N2 gas flow rates on the etch selectivity of silicon nitride (Si3N4) layers to extreme ultra-violet (EUV) resist and the variation of the line edge roughness (LER) of the EUV resist and Si3N4 pattern were investigated during etching of a Si3N4/EUV resist structure in dual-frequency superimposed CH2F2/N2/Ar capacitive coupled plasmas (DFS-CCP). The flow rates of CH2F2 and N2 gases played a critical role in determining the process window for ultra-high etch selectivity of Si3N4/EUV resist due to disproportionate changes in the degree of polymerization on the Si3N4 and EUV resist surfaces. Increasing the CH2F2 flow rate resulted in a smaller steady state CHxFy thickness on the Si3N4 and, in turn, enhanced the Si3N4 etch rate due to enhanced SiF4 formation, while a CHxFy layer was deposited on the EUV resist surface protecting the resist under certain N2 flow conditions. The LER values of the etched resist tended to increase at higher CH2F2 flow rates compared to the lower CH2F2 flow rates that resulted from the increased degree of polymerization.  相似文献   

2.
The influence of plasma heating of the Si and glass wafer substrates on silicon dioxide (SiO2) deposition rates by a tetraethylorthosilicate/O2 supermagnetron (high-density) plasma CVD were investigated. With a fixed RF power of 100 W supplied to both upper and lower electrodes, the SiO2 deposition rate on the Si wafer substrate decreased with increasing wafer-stage temperature, showing a negative activation energy for the deposition rate. When Si and glass wafers were attached to the electrode using adherent thermal conductors, the film thickness increased almost linearly with regard to the deposition time, and both deposition rates became almost the same (about 310 Å/min). When both wafers were simply laid on the electrode without an adhesive bond and hence with poor thermal contact, the film thickness increased nonlinearly with deposition time, showing a gradual decrease in deposition rate with time, being as low as 80 and 150 Å/min, respectively for Si and glass wafers, for a deposition time of 15 min. The difference between the two deposition rates on Si and glass wafers in the case of poor thermal contact to the lower electrode is thought to be caused by plasma heating and related mainly to differences in optical absorption characteristics of the two wafer substrates. Variations in measured thickness distributions across the substrate surface were attributed to an antisymmetric plasma density distribution in the direction perpendicular to the magnetic field lines caused by E×B electron drift.  相似文献   

3.
D.Y. Kim 《Thin solid films》2008,516(11):3512-3516
Under certain conditions during ITO etching using CH4/H2/Ar inductively coupled plasmas, the etch rate selectivity of ITO to photoresist (PR) was infinitely high because the ITO films continued to be etched, but a net deposition of the α-C:H layer occurred on the top of the PR. Analyses of plasmas and etched ITO surfaces suggested that the continued consumption of the carbon and hydrogen in the deposited α-C:H layer by their chemical reaction with In and Sn atoms in the ITO resulting in the generation of volatile metal-organic etch products and by the ion-enhanced removal of the α-C:H layer presumably play important roles in determining the ITO etch rate and selectivity.  相似文献   

4.
In this study, we compared the line edge roughnesses (LER) and profile angles of chemical vapor deposited (CVD) amorphous carbon (a-C) patterns etched in an inductively coupled plasma (ICP) etcher produced by varying process parameters such as the N2 gas flow ratio, Q (N2), and dc self-bias voltage (Vdc) in O2/N2/Ar and H2/N2/Ar plasmas. The tendencies of the LER and profile angle values of the etched CVD a-C pattern were similar in both plasmas. The LER was smaller in the O2/N2/Ar than in the H2/N2/Ar plasmas, and the profile angle was larger in the O2/N2/Ar than in the H2/N2/Ar plasmas under the same processes conditions. The use of O2/N2/Ar plasma was more advantageous than the H2/N2/Ar plasma for controlling LER and profile angle.  相似文献   

5.
The effect of high-frequency (HF) frequency on etching characteristics of SiCOH films in a CHF3 dual-frequency capacitively couple plasma driven by 13.56 MHz/2 MHz, 27.12 MHz/2 MHz or 60 MHz/2 MHz sources was investigated in this work. The surface structure of the films after etching and the CHF3 discharge plasma were characterized. The increase of HF frequency reduced the critical HF power for the etching, suppressed the C:F deposition at the surface of etched films, and improved the etching of SiCOH films. The improvement of etching was attributed to the increase of ions energy and F concentration at high HF frequency.  相似文献   

6.
In this work, we report on effects of post-deposition annealing on electrical characteristics of metal–insulator–semiconductor (MIS) structures with HfO2/SiO2 double gate dielectric stacks. Obtained results have shown the deterioration of electro-physical properties of MIS structures, e.g. higher interface traps density in the middle of silicon forbidden band (Ditmb), as well as non-uniform distribution and decrease of breakdown voltage (Ubr) values, after annealing above 400 °C. Two potential hypothesis of such behavior were proposed: the formation of interfacial layer between hafnia and silicon dioxide and the increase of crystallinity of HfO2 due to the high temperature treatment. Furthermore, the analysis of conduction mechanisms in investigated stacks revealed Poole–Frenkel (P–F) tunneling at broad range of electric field intensity.  相似文献   

7.
R. Knizikevi?ius 《Vacuum》2008,82(11):1191-1193
The reactive ion etching (RIE) of Si and SiO2 in CF4 plasma is considered. The dependences of RIE rates of Si and SiO2 on pressure have maxima due to the presence of single-atom vacancies. The RIE rates approach the maximum values at different pressures but at the same concentration of SiF and SiOF molecules in the adsorbed layer. Using the obtained results Si/SiO2 etching selectivity is investigated.  相似文献   

8.
Etch damage of TiO2 thin films with the anatase phase by capacitively coupled RF Ar plasmas has been investigated. The plasma etching causes a mixed phase of anatase and rutile or the rutile phase. The effect of Ar plasma etching damage on degenerating TiO2 thin films is dependent on gas pressure and etching time. The physical etching effect at a low gas pressure (1.3 Pa) contributes to the degradation: the atomic O concentration at the thin film surface is strongly increased. At a high gas pressure (13-27 Pa) and long etching time (60 min), there are a variety of surface defects or pits, which seem to be similar to those for GaN resulting from synergy effect between particle and UV radiation from the plasmas. For the hydrophilicity, the thin film etched at the high gas pressure and a short etching time (5 min) seems to have no etch damage: its contact angle property is almost similar to that for the as-grown thin film, and is independent of the black light irradiation. This result would probably result from formation of donor-like surface defects such as oxygen vacancy.  相似文献   

9.
In this study, we present a facile route to fabricate GaN nanorods by employing the nanosphere lithography (NSL) technique. Compared to previous approaches, it was demonstrated that arrays of silica (SiO2) nanospheres can be effectively used as etching masks for the inductively coupled plasma etching process. By adjusting the etching conditions between SiO2 nanospheres and GaN substrates, well-defined nanorods, which were as long as a few microns with controllable diameters, were successfully fabricated. This method is much simpler than any other technique currently being used, and can be generally applied to fabricate various types of nanorods.  相似文献   

10.
R. Knizikevi?ius 《Vacuum》2009,83(6):953-189
Chemical etching of Si and SiO2 in SF6 + O2 plasma is considered. The concentrations of plasma components are calculated using values extrapolated from experimental data. Resulting calculations of plasma components are used for the calculation of Si and SiO2 etching rates. It is found that the reaction constants for reactions of F atoms with Si atoms and SiO2 molecules are equal to (3.5 ± 0.1) × 10−2 and (3.0 ± 0.1) × 10−4, respectively. The influence of O2 addition to SF6 plasma on the etching rate of Si is quantified.  相似文献   

11.
Amorphous carbon nitride (a-CNx) films were formed by supermagnetron sputter deposition using N2 and/or Ar gases. Supplying rf power with a substrate-holding electrode (bias sputter) and lowering the gas pressure were found to be effective at decreasing the optical band gap and increasing the hardness. Nitrogen concentrations of bias sputtered films were about 32-35 mass% (30-100 mTorr). The a-CNx films deposited for electron field emission showed a low-threshold electric field (ETH). With the decrease of gas pressure, admixture of Ar to N2 or the use of pure Ar, and the use of bias sputter, the ETH of a-CNx films largely decreased to 11 V/μm (30 mTorr Ar/N2 bias sputter).  相似文献   

12.
We investigated the N2 additive effect on the etch rates of TiN and SiO2 and etch profile of TiN in N2/Cl2/Ar adaptively coupled plasma (ACP). The mixing ratio of Cl2 and Ar was fixed at 75 and 25 sccm, respectively. The N2 flow rate was increased from 0 to 9 sccm under the constant pressure of 10 mTorr. As N2 flow rate was increased in N2/Cl2/Ar plasma, the etch rate of TiN was linearly increased, but that of SiO2 was increased non-monotonically. The etch profile and the compositional changes of TiN was investigated with field emission-scanning electron microscope (FE-SEM), FE-Auger electron spectroscopy (FE-AES) and x-ray photoelectron spectroscopy (XPS). When 9 sccm N2 was added into Cl2/Ar, a steep etch profile and clean surface of TiN was obtained. In addition, the signals of TiN and Ti were disappeared in FE-AES and XPS when N2 additive flow into Cl2/Ar was above 6 sccm. From the experimental data, the increase in TiN etch rate was mainly caused by the increase of desorption and evacuation rate of etch by products because of the increased effective pumping speed. The etch mechanism of TiN in N2/Cl2/Ar ACP plasma can be concluded as the ion enhanced chemical etch.  相似文献   

13.
We report a comparison of dry etching of polymethyl methacrylate (PMMA) and polycarbonate (PC) in O2 capacitively coupled plasma (CCP) and inductively coupled plasma (ICP). A diffusion pump was used as high vacuum pump in both cases. Experimental variables were process pressure (30-180 mTorr), CCP power (25-150 W) and ICP power (0-350 W). Gas flow rate was fixed at 5 sccm. An optimized process pressure range of 40-60 mTorr was found for the maximum etch rate of PMMA and PC in both CCP and ICP etch modes. ICP etching produced the highest etch rate of 0.9 μm/min for PMMA at 40 mTorr, 100 W CCP and 300 W ICP power, while 100 W CCP only plasma produced 0.46 μm/min for PMMA at the same condition. For polycarbonate, the highest etch rates were 0.45 and 0.27 μm/min, respectively. RMS surface roughnesses of PMMA and PC were about 2-3 nm after etching. Etch selectivity of PMMA over photoresist was 1-2 and that of PC was less than 1. When ICP power increased from 0 to 350 W, etch rates of PMMA and PC increased linearly from 0.47 to 1.18 μm/min and from 0.18 to 0.6 μm/min, while the negative self bias slightly reduced from 364 to 352 V. Increase of CCP power raised both self bias and PMMA etch rate. PMMA etch rates were about 3 times higher than those of PC at the same CCP conditions. SEM data showed that there was some undercutting of PMMA and PC after etching at 300 W ICP, 100 W CCP and 40 mTorr. The results also showed that the etched surface of PMMA was rough and that of PC was relatively smooth.  相似文献   

14.
Dry etching of indium zinc oxide (IZO) thin films was performed using inductively coupled plasma reactive ion etching in a C2F6/Ar gas. The etch characteristics of IZO films were investigated as a function of gas concentration, coil rf power, dc-bias voltage to substrate, and gas pressure. As the C2F6 concentration was increased, the etch rate of the IZO films decreased and the degree of anisotropy in the etch profile also decreased. The etch profile was improved with increasing coil rf power and dc-bias voltage, and decreasing gas pressure. An X-ray photoelectron spectroscopy analysis confirmed the formation of InF3 and ZnF2 compounds on the etched surface due to the chemical reaction of IZO films with fluorine radicals. In addition, the film surfaces etched at different conditions were examined by atomic force microscopy. These results demonstrated that the etch mechanism of IZO thin films followed sputter etching with the assistance of chemical reaction.  相似文献   

15.
Inductively coupled plasma reactive ion etching of titanium thin films patterned with a photoresist using Cl2/Ar gas was examined. The etch rates of the titanium thin films increased with increasing the Cl2 concentration but the etch profiles varied. In addition, the effects of the coil rf power, dc-bias voltage and gas pressure on the etch rate and etch profile were investigated. The etch rate increased with increasing coil rf power, dc-bias voltage and gas pressure. The degree of anisotropy in the etched titanium films improved with increasing coil rf power and dc-bias voltage and decreasing gas pressure. X-ray photoelectron spectroscopy revealed the formation of titanium compounds during etching, indicating that Ti films etching proceeds by a reactive ion etching mechanism.  相似文献   

16.
In this article, we report the results obtained from a study carried out on the inductively coupled plasma (ICP) etching of poly-monochloro-para-xylylene (parylene-C) thin films using an O2/CF4 gas mixture. The effects of adding CF4 to the O2 plasma on the etch rates were investigated. As the CF4 gas fraction increases up to approximately 16%, the polymer etch rate increases in the range of 277-373 nm/min. In this work, the atomic force microscopy (AFM) analysis indicated that the surface roughness was reduced by the addition of CF4 to the O2 plasma. Contact angle measurements showed that the surface energy decreases with increasing CF4 fraction. At the same time, X-ray photoelectron spectroscopy (XPS) demonstrated the increase in the relative F atomic content on the surface.  相似文献   

17.
R. Knizikevi?ius 《Vacuum》2012,86(12):1964-1968
The plasma chemical etching (PCE) of Si in CF4 + O2 plasma is considered. The concentrations of plasma components are calculated using values extrapolated from experimental data. Resulting calculations of plasma components are used for the calculation of Si etching rates. The concentrations of the adsorbed layer and surface components, obtained from analysis of PCE of silicon, are used for the comparison of site-balance and adsorbed-layer models. It is found that adsorbed-layer model predicts higher concentration of SiO2 molecules on the surface than site-balance model. The difference in SiO2 concentration is important during ion-beam-assisted etching and reactive ion etching processes as the models predict different etching rates due to different sputtering yields of Si atoms and SiO2 molecules.  相似文献   

18.
A study of the defect centres, related to oxide charge and interface traps, induced in thin SiO2 layer by technological procedures has been made. Thermal oxidation of Si was performed in dry O2 at a temperature of 850°C. The Si cleaning procedures included dry hydrogen plasma treatment at different substrate temperatures and standard RCA wet cleaning. Characterization of defects was performed by analyzing the frequency dispersion of the capacitance-voltage characteristics. The origin of the defects was assessed by analysis of the IR spectra through computer simulation of the oxide structure and AFM images.  相似文献   

19.
We report on pulsed laser deposition of TiO2 films on glass substrates in oxygen, methane, nitrogen and mixture of oxygen and nitrogen atmosphere. The nitrogen incorporation into TiO2 lattice was successfully achieved, as demonstrated by optical absorption and XPS measurements. The absorption edge of the N-doped TiO2 films was red-shifted up to ∼ 480 nm from 360 nm in case of undoped ones.The photocatalytic activity of TiO2 films was investigated during toxic Cr(VI) ions photoreduction to Cr(III) state in aqueous media under irradiation with visible and UV light. Under visible light irradiation, TiO2 films deposited in nitrogen atmosphere showed the highest photocatalytic activity, whereas by UV light exposure the best results were obtained for the TiO2 structures deposited in pure methane and oxygen atmosphere.  相似文献   

20.
R. Knizikevi?ius 《Vacuum》2006,81(3):230-233
The reactive ion etching (RIE) of silicon in CF4+H2 plasma is considered. The influence of activated polymer on the RIE rate of silicon in CF4+H2 plasma is determined by extrapolation of experimentally measured kinetics of the etching rate. It is found that increased adsorption of CF2 radicals suppresses the RIE rate of silicon in CF4+H2 plasma during the initial stages of the etching process. The formation of activated polymer becomes pronounced when adsorbed CF2 radicals are slowly activated. The activated polymer intensifies the etching reaction and enhances the etching rate. C atoms, produced during the reaction, contribute to the formation of polymer on the surface. The increased concentration of the polymer suppresses the RIE rate of silicon in CF4+H2 plasma at later stages of the etching process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号