首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of phosphorescent Ir(III) complexes 1-4 were synthesized based on aryl(6-arylpyridin-3-yl)methanone ligands, and their photophysical and electroluminescent properties were characterized. Multilayer devices with the configuration, Indium tin oxide/4,4′,4″-tris(N-(naphthalene-2-yl)-N-phenyl-amino)triphenylamine (60 nm)/4,4′-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (20 nm)/Ir(III) complexes doped in N,N′-dicarbazolyl-4,4′-biphenyl (30 nm, 8%)/2,9-dimethyl-4,7-diphenyl-phenathroline (10 nm)/tris(8-hydroxyquinoline)-aluminum (20 nm)/lithium quinolate (2 nm)/ Al (100 nm), were fabricated. Among these, the device employing complex 2 as a dopant exhibited efficient red emission with a maximum luminance, luminous efficiency, power efficiency and quantum efficiency of 16200 cd/m2 at 14.0 V, 12.20 cd/A at 20 mA/cm2, 4.26 lm/W and 9.26% at 20 mA/cm2, respectively, with Commission Internationale de l'Énclairage coordinates of (0.63, 0.37) at 12.0 V.  相似文献   

2.
This paper reports the synthesis and electroluminescent properties of a series of blue emitting materials with arylamine and diphenylvinylbiphenyl groups for applications to efficient blue organic light-emitting diodes (OLEDs). All devices exhibited blue electroluminescence with electroluminescent properties that were quite sensitive to the structural features of the dopants in the emitting layers. In particular, the device using dopant 4 exhibited sky-blue emission with a maximum luminance, luminance efficiency, power efficiency, external quantum efficiency and CIE coordinates of 39,000 cd/m2, 12.3 cd/A, 7.45 lm/W, 7.71% at 20 mA/cm2 and (x = 0.17, y = 0.31) at 8 V, respectively. In addition, a blue OLED using dopant 2 with CIE coordinates (x = 0.16, y = 0.18) at 8 V exhibited a luminous efficiency, power efficiency and external quantum efficiency of 4.39 cd/A, 2.46 lm/W and 2.97% at 20 mA/cm2, respectively.  相似文献   

3.
A series of red-phosphorescent iridium (III) complexes 1-4 based on 5-benzoyl-2-phenylpyridine derivatives was synthesized. Their photophysical and electrophosphorescent properties were investigated. Multilayered OLEDs were fabricated with a device structure ITO/4,4′,4″-tris(N-(naphtalen-2-yl)-N-phenyl-amino)triphenylamine (60 nm)/4,4′-bis(N-naphtylphenylamino)biphenyl (20 nm)/Ir(III) complexes (8%) doped in 4,4′-N,N′-dicarbazolebiphenyl (30 nm)/2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (10 nm)/tris(8-hydroxyquinolinyl)aluminum(III) (20 nm)/Liq (2 nm)/Al (100 nm). All devices exhibited efficient red emissions. Among those, in a device containing iridium complex 1 dopant, the maximum luminance was 14200 cd/m2 at 14.0 V. Also, its luminous, power, and quantum efficiency were 10.40 cd/A, 3.44 lm/W and 9.21% at 20 mA/cm2, respectively. The peak wavelength of the electroluminescence was 607 nm, with CIE coordinates of (0.615, 0.383) at 12.0 V, and the device also showed a stable color chromaticity with various voltages.  相似文献   

4.
In this paper, we have designed four diphenylaminofluorenylstyrene derivatives end-capped with heterocyclic aromatic groups, such as 9-phenylcabazole, 4-dibenzofuran, 2-benzoxazole, 2-quinoxaline, respectively. These materials showed blue to red fluorescence with maximum emission wavelengths of 476–611 nm, respectively, which were dependent on the structural and electronic nature of end-capping groups. To explore the electroluminescent properties of these materials, multilayer OLEDs were fabricated in the following sequence: ITO/DNTPD (40 nm)/NPB (20 nm)/2% doped in MADN (20 nm)/Alq3 (40 nm)/Liq. (1 nm)/Al. Among those, a device exhibited a highly efficient blue emission with the maximum luminance of 14,480 cd/m2 at 9 V, the luminous efficiency of 5.38 cd/A at 20 mA/cm2, power efficiency of 2.77 lm/W at 20 mA/cm2, and CIEx,y coordinates of (0.147, 0.152) at 8 V, respectively.  相似文献   

5.
We report single dopant single emissive layer white organic electroluminescent (EL) device based on the heteroleptic tris-cyclometalated iridium(III) complex, Ir(dfppy)2(pq), as the guest, where dfppy and pq are 2-(2,4-difluorophenyl) pyridine and 2-phenylquinoline, respectively, and 1,4-phenylenesis(triphenylsilane) (UGH2) as the host. The maximum luminous and power efficiencies of the device were 11.00 cd/A (J = 0.05 mA/cm2) and 5.60 lm/W (J = 0.001 mA/cm2), respectively. The CIE coordinates of the device with Ir(dfppy)2(pq) are (0.443, 0.473) and the EL spectrum of device shows emission band at 473 and 544 nm, at the applied voltage of 12 V. The similar phosphorescent decay rate of two ligands can lead to emit luminescence in two ligands at the same time.  相似文献   

6.
Efficient orange-red fluorescent compounds, 4-(dicyanomethylene)-2-adamantyl-6-(4-(N-(4-tert-butylphenyl)-N-(3,5-di-tert-butylphenyl)amino)benzene)vinyl-4H-pyran (DCATP) and 2,6-bis[4-(N-(4-tert-butylphenyl)-N-(3,5-di-tert-butylphenyl)amino)benzene]vinyl-4-(dicyanomethylene)-4H-pyran (BDCTP) containing the tert-butylated triphenylamine in donor moieties, were synthesized and characterized. In these red emitters, bulky groups, such as t-butyl group and adamantane were introduced to increase the steric hindrance between the red emitters. In particular, an efficient orange-red device containing the emitter DCATP as a dopant showed a luminous and power efficiency of 6.87 cd/A and 2.70 lm/W, respectively, at 20 mA/cm2 with the CIE coordinates of (0.48, 0.50) at 7.0 V. In addition, an efficient red organic light-emitting diode using BDCTP as a dopant exhibited a luminous and power efficiency of 2.30 cd/A and 1.31 lm/W, respectively, at 20 mA/cm2 and CIE coordinates of (0.61, 0.39).  相似文献   

7.
A series of cyclometalated iridium complexes with 2-fluorenylquinoline derivative ligands were synthesized and their photophysical and electroluminescent properties examined using multilayered, organic light-emitting diodes fabricated with the complexes as dopant materials. In the device containing the complex 3 dopant, the maximum luminance was 20,200 cd/m2 at 14 V, the luminous and power efficiencies were 14.1 cd/A and 11.0 lm/W, respectively, and the CIE coordinates were (0.65, 0.35) which were close to saturated red emission.  相似文献   

8.
A series of blue fluorescent 9,9-diethyl-2,7-distyryl-9H-fluorene derivatives with various capping moieties such as diphenylamino; diphenylphosphino; triphenylsilyl; phenoxy; phenylmercapto; phenylselenoxy; and triphenymethyl groups were synthesized using the Honor-Emmons reaction. The highest occupied molecular orbital-lowest unoccupied molecular orbital energy levels were characterized with a photoelectron spectrometer and rationalized with quantum mechanical density functional theory calculations. The electroluminescent properties were explored through the fabrication of multilayer devices with a structure of Indium-tin-oxide/N,N′-diphenyl-N,N′-(1-napthyl)-(1,1′-phenyl)-4,4′-diamine/2-methyl-9,10-di(2-naphthyl)anthracene:blue dopants (5-15 wt.%)/4,7-diphenyl-1,10-phenanthroline/lithium quinolate/Al. All devices, except that using NPh2, exhibited a Commission Internationale de I'Eclairage (CIE) y value less than 0.19. The best luminous efficiency of 3.87 cd/A and external quantum efficiency of 2.65% at 20 mA/cm2 were obtained in a device comprising the 4-phenylsulfanyl capped 9,9-diethyl-2,7-distyrylfluorene derivative with CIE coordinates (0.16, 0.18).  相似文献   

9.
A series of arylamine substituted DPVBi derivatives (1-4) were synthesized via the Horner-Wadsworth-Emmons reaction. Their electroluminescent properties were examined by fabricating a multilayer OLED device with the following structure: ITO/DNTPD (40 nm)/NPB (20 nm)/2% DPVBi derivatives (1-4) doped in MADN (20 nm)/Alq3 (40 nm)/Liq (1.0 nm)/Al. All devices showed efficient blue emission. In particular, a high efficiency blue OLED was fabricated using compound 1 as a dopant in the emitting layer. The maximum luminance, luminous efficiency, power efficiency and CIE coordinates of the blue OLED using compound 1 as a dopant were 16110 cd/m2 at 10 V, 10.1 cd/A at 20 mA/cm2, 4.37 Im/W at 20 mA/cm2, and (x = 0.197, y = 0.358) at 8 V, respectively. Moreover, a device using compound 4 as the dopant exhibited efficient deep blue emission with a luminance, luminous efficiency, power efficiency and CIE coordinates of 7005 cd/m2 at 10 V, 6.25 cd/A at 20 mA/cm2, 2.50 Im/W at 20 mA/cm2 and (x = 0.151, y = 0.143) at 8 V, respectively.  相似文献   

10.
We demonstrate an efficient Si-based top-emitting organic light-emitting diode using a fluorescent emitting system composed of a green dye of 9,10-bis(m-tolylphenylamino)anthracene (TPA) doped into a blue matrix of 9,9′,10,10′-tetraphenyl-2,2′-bianthracene (TPBA). The device shows green emission with a maximum luminous efficiency of 3.3 cd/A and a power efficiency of 2.3 lm/W. The maximum luminance reaches 1.3 × 104 cd/m2 at a driving voltage of 12 V. The excellent performances partially resulted from effective energy transfer in the emitting system of [TPBA: 2 wt.% TPA]. In addition, the emission spectra exhibit negligible variation with increasing viewing angles, indicating a weak microcavity effect because of low reflectance of Si anode.  相似文献   

11.
Efficient red fluorescent compounds Red 1 and Red 2 based on bulky bicyclo[2,2,2]octane groups in the pyran moiety and tert-butyl or isopropyl group in the julolidine moiety of the 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetra-methyljulolidyl-9-enyl)-4H-pyran (DCJTB) skeleton were synthesized and characterized. As red-emitting dopants in an Alq3 single-host emitting system, Red 1 and Red 2 exhibited improved color purity and enhanced luminous efficiency compared to DCJTB. Moreover, a device using Red 1 as a dopant in a rubrene-Alq3 co-host emitting system exhibited improved electroluminescence performance with a luminous efficiency and power efficiency of 6.89 cd/A and 3.09 lm/W at 20 mA/cm2, respectively, and CIE x,y coordinates of (x = 0.64,y = 0.36) at 7.0 V, approaching saturated red emission.  相似文献   

12.
An a.c. powder electroluminescent (EL) device using ZnGa2O4:Cr3+ phosphor was fabricated by the screen printing method. Optical and electrical properties of the device were investigated. The fabricated device shows a red emission at 695 nm driven by the a.c. voltage. The emission is attributed to the energy transfer from hot electrons to Cr3+ centers via self-activated Ga-O groups. Luminance (L) versus voltage (V) matches the well-known equation of L = L0exp(− bV − 1 / 2) and luminance increases proportionally with frequency due to the increase of excitation probability of host lattice or Cr3+ centers. The diagram of the charge density (Q) versus applied voltage (V) is based on a conventional Sawyer-Tower circuit. At 280 V and 1000 Hz, the luminance and the luminous efficiency of the fabricated powder EL device are about 1.0 cd/m2 and 13 lm/W, respectively. And under the high field, the device fabricated with the oxide-based phosphor of ZnGa2O4:Cr3+ shows excellent stability in comparison with the conventional sulfide powder EL device.  相似文献   

13.
The authors have demonstrated efficient orange-red organic lighting diodes (OLEDs) using a new fluorescent orange-red material, 9,10-bis[4-(di-4-tert-buthylphenylamino)styryl]anthracene (ATBTPA). The optimized orange-red OLED using ATBTPA achieved a maximum external quantum efficiency (EQE) of 3.78%, a current efficiency (CE) of 9.47 cd/A, and Commision Internationale de L'Eclairage (CIEx,y) coordinates of (0.51, and 0.48) at 1.61 mA/cm2 in comparison with orange-red OLED using (5,6,11,12)-tetraphenyl-naphthacene (rubrene) which showed a maximum EQE of 1.65%, CE of 4.94 cd/A, and CIEx,y coordinates of (0.50, and 0.49) at 0.61 mA/cm2, respectively. The optimized orange-red device using ATBTPA showed higher efficiency of two times the orange-red device using rubrene due to the efficient Förster singlet energy transfer from MADN to ATBTPA in comparison with that from MADN to rubrene. This study clearly suggests that ATBTPA is an excellent fluorescent orange-red material for efficient WOLEDs.  相似文献   

14.
The photoluminescence properties of one europium complex Eu(TFNB)3Phen (TFNB = 4,4,4-trifluoro-1-(naphthyl)-1,3-butanedione, Phen = 1,10-phenanthroline) doped in a hole-transporting material CBP (4,4′-N,N′-dicarbazole-biphenyl) films were studied. A series of organic light-emitting devices (OLEDs) using Eu(TFNB)3Phen as the emitter were fabricated with a multilayer structure of indium tin oxide, 250 Ω/square)/TPD (N,N′-diphenyl-N,N′-bis(3-methyllphenyl)-(1,1′-biphenyl)-4,4′-diamine, 50 nm)/Eu(TFNB)3phen (x): CBP (4,4′-N,N′-dicarbazole-biphenyl, 45 nm)/BCP (2,9-dimethyl-4,7-diphenyl-l,10 phenanthroline, 20 nm)/AlQ (tris(8-hydroxy-quinoline) aluminium, 30 nm)/LiF (1 nm)/Al (100 nm), where x is the weight percentage of Eu(TFNB)3phen doped in the CBP matrix (1-6%). A red emission at 612 nm with a half bandwidth of 3 nm, characteristic of Eu(III) ion, was observed with all devices. The device with a 3% dopant concentration shows the maximum luminance up to 1169 cd/m2 (18 V) and the device with a 5% dopant concentration exhibits a current efficiency of 4.46 cd/A and power efficiency of 2.03 lm/W. The mechanism of the electroluminescence was also discussed.  相似文献   

15.
New host materials have been designed and synthesized, (4-(10-(naphthalen-2-yl)anthracen-9-yl)phenyl)triphenylsilane (ANPTPS) and (9,9-dimethyl-7-(10-(naphthalen-2-yl)anthracen-9-yl)-9H-fluoren-2-yl)triphenylsilane (ANFTPS), and photophysical characteristics investigated to determine suitability as candidates for blue light-emitting materials. To explore the electroluminescent properties, multilayered OLEDs were fabricated with the device structure of ITO/NPB/Host (ANPTPS and ANFTPS): 8% Dopant (PFVtPh and PCVtPh)/Bphen/Liq/Al. By using a host (ANPTPS) and a dopant (PFVtPh) as the emitting layer, high-efficiency blue OLEDs were fabricated with a maximum luminance of 3991 cd/cm2 at 8.0 V, a luminous efficiency of 5.99 cd/A at 20 mA/cm2, a power efficiency of 3.11 lm/W at 20 mA/cm2, an external quantum efficiency of 4.13% at 20 mA/cm2, and CIEx, y coordinates of (x = 0.15, y = 0.18) at 8.0 V.  相似文献   

16.
We describe the design and synthesis of a sterically hindered yellow dopant, tetra(t-butyl)rubrene (TBRb) which, when doped in either 1,4-bis[N-(1-naphthyl)-N′-phenylamino]-biphenyl or aluminum tris(8-hydroxyquinoline) (Alq3) as emitter, shows nearly 25% increase in luminance efficiency over that of the state-of-the-art rubrene (Rb) device without significantly effecting its corresponding color. At 5% doping in Alq3 and 20 mA/cm2 current drive condition, the electroluminescence efficiency of TBRb reaches 8.5 cd/A and 2.8 lm/W with a yellow color of Commission Internationale de l'Eclairage chromaticity coordinates (CIEx,y) = [0.52, 0.48], which is among the best ever reported for yellow electrofluorescence in organic light-emitting devices.  相似文献   

17.
The spectroscopic, electrochemical and electroluminescent properties of three binuclear Ru(II) complexes with different length of flexible bridges were investigated. The single-layer electroluminescent devices with configuration of indium-tin oxide/Ru complex (~ 100 nm)/Ga:In were found to give a turn-on voltages as low as 2.3 V, a maximum luminance up to 310 cd/m2 at a bias voltage of 5.8 V, and low delay times less than 2 s.  相似文献   

18.
We demonstrated efficient white electrophosphorescence with a heavily doped phosphorescent blue emitter and a triplet exciton blocking layer (TEBL) inserted between the hole transporting layer (HTL) and the emitting layer (EML). We fabricated white organic light-emitting diodes (WOLEDs) (devices A, B, C, and D) using a phosphorescent red emitter; bis(2-phenylquinolinato)-acetylacetonate iridium III (Ir(pq)2acac) doped in the host material; N,N′-dicarbazolyl-3,5-benzene (mCP) as the red EML and the phosphorescent blue emitter; bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (FIrpic) doped in the host material; p-bis(triphenylsilyly)benzene (UGH2) as the blue EML. The properties of device B, which demonstrate a maximum luminous efficiency and external quantum efficiency of 26.83 cd/A and 14.0%, respectively, were found to be superior to the other WOLED devices. It also showed white emission with CIEx,y coordinates of (x = 0.35, y = 0.35) at 8 V. Device D, which has a layer of P-type 4,4′,4″-tri(N-carbazolyl)triphenylamine (TCTA) material between the HTL and TEBL, was compared with device A to determine the 430 nm emission peak.  相似文献   

19.
In this paper, we described a donor-acceptor-donor type red fluorescence material, which have the bulky trimethylsilane groups in the donor moieties. To explore the electroluminescence properties of these materials, multilayered OLEDs were fabricated with a device structure of ITO/2-TNATA (60 nm)/NPB (40 nm)/Red 1 (2%):rubrene (50%):Alq3 (30 nm)/Alq3 (60 nm)/Liq (3 nm)/Al (100 nm). A device using Red 1 as the dopant material showed a maximum luminance of 5138 cd/m2 at 12.0 V, maximum luminous efficiencies of 1.62 cd/A, and maximum power efficiencies of 1.04 lm/W. The Commission Internationale de L'Eclairage coordinates of this device was (0.67, 0.33) at 7.0 V, which indicated stable color chromaticity at various voltages.  相似文献   

20.
A series of red emitters 1-3 based on modified DCM were synthesized and their electroluminescent properties were investigated. A device employing red emitter 2 as a dopant exhibited efficient red emission with maximum luminous efficiency of 1.87 cd/A, maximum power efficiency of 0.78 lm/W, maximum external quantum efficiency of 1.52%, and CIE coordinates of (0.65, 0.35) at 7.0 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号