首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we examined the effect of etching on the electrical properties, transmittance, and scattering of visible light in molybdenum doped zinc oxide, ZnO:Mo (MZO) thin films prepared by pulsed direct current magnetron sputtering. We used two different etching solutions - KOH and HCl - to alter the surface texture of the MZO thin film so that it could trap light. The experimental results showed that an MZO film with a minimum resistivity of about 8.9 × 10− 4 Ω cm and visible light transitivity of greater than 80% can be obtained without heating at a Mo content of 1.77 wt.%, sputtering power of 100 W, working pressure of 0.4 Pa, pulsed frequency of 10 kHz, and film thickness of 500 nm. To consider the effect of resistivity and optical diffuse transmittance, we performed etching of an 800 nm thick MZO thin film with 0.5 wt.% HCl for 3-6 s at 300 K. Consequently, we obtained a resistivity of 1.74-2.75 × 10− 3 Ω cm, total transmittance at visible light of 67%-73%, diffuse transmittance at visible light of 25.1%-28.4%, haze value of 0.34-0.42, and thin film surface crater diameters of 220-350 nm.  相似文献   

2.
3.
High quality transparent conductive ZnO thin films with various thicknesses were prepared by pulsed filtered cathodic vacuum arc deposition (PFCVAD) system on glass substrates at room temperature.The high quality of the ZnO thin films was verified by X-ray diffraction and optical measurements. XRD analysis revealed that all films had a strong ZnO (200) peak, indicating c-axis orientation. The ZnO thin films are very transparent (92%) in the near vis regions. For the ZnO thin films deposited at a pressure of 0.086 Pa (6.5 × 10−4 Torr) optical energy band gap decreased from 3.21 eV to 3.19 eV with increasing the thickness. Urbach tail energy also decreased as the film thickness increased.Spectral dependence of the photoconductivity was obtained from measurements of the samples deposited at various thicknesses. Photoconductivities were observed at energies lower than energy gap which indicates the existence of energy states in the forbidden gap. Photoconductivities of ZnO thin films increase with energy of the light and reach its maximum value at around 2.32 eV. Above this value surface recombination becomes dominant process and reduces the photocurrent. The photoconductivity increases with decreasing the film thickness.  相似文献   

4.
Diamond-like carbon (DLC) film is a promising candidate for surface acoustic wave (SAW) device applications because of its higher acoustic velocity. A zinc oxide (ZnO) thin film has been deposited on DLC film/Si substrate by RF magnetron sputtering; the optimized parameters for the ZnO sputtering are RF power density of 0.55 W/cm2, substrate temperature of 380 °C, gas flow ratio (Ar/O2) of 5/1 and total sputter pressure of 1.33 Pa. The results showed that when the thickness of the ZnO thin films was decreased, the phase velocity of the SAW devices increased significantly.  相似文献   

5.
W.T. Yen  P.C. Yao  Y.L. Chen 《Thin solid films》2010,518(14):3882-1266
In this study, highly conductive films of ZnO:Ga (GZO) were deposited by pulsed direct current magnetron sputtering to explore the effect of post-annealing on the structural, electrical and optical properties of the films. XRD patterns showed that after annealing, the intensity of c-axis preferentially oriented GZO (002) peak was apparently improved. GZO film annealing at 300 °C for 0.5 h exhibits lowest resistivity of 1.36 × 10− 4 Ω cm. In addition, the film shows good optical transmittance of 88% with optical band gap, 3.82 eV. Carrier concentration and optical band gap both decreases with the annealing temperature. Besides, the near-infrared transmittance at 1400 nm is below 5%, while the reflectivity at 2400 nm is as high as 70%.  相似文献   

6.
The effects of power and pressure on radiofrequency (RF) diode sputtering in oblique-angle (80°) deposition arrangement are presented. Oblique-angle sputtering of ZnO:Ga (GZO) thin films resulted in a tilted columnar crystalline structure and inclination of the c-axis by an angle of approximately 9° with respect to the substrate. This improved their structural, electrical and optical properties in comparison with films deposited perpendicularly to the substrate. GZO films sputtered by an RF power of 600 W at room temperature of the substrate in Ar pressure 1.3 Pa showed strong crystalline (002) texture, lowest electrical resistivity 3.4 × 10− 3 Ωcm, highest electron mobility 10 cm2 V− 1 s− 1, high electron concentration 1.8 × 1020 cm− 3 and good optical transparency up to 88%. The small inclination angle of the film structure is caused by the high kinetic energy of sputtered species and additional energetic particle bombardment causes random surface diffusion, which is suppressing the shadow effect produced by oblique-angle sputtering.  相似文献   

7.
Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 °C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively.  相似文献   

8.
In this work, polycrystalline aluminum doped zinc oxide (ZnO:Al) films with c-axis (002) orientation have been grown on glass and silicon substrates by RF (radio frequency) magnetron sputtering technique, at room temperature. A systematic study of the effect of sputtering deposition parameters (i.e. RF power and argon gas pressure) on the structural, optical and electrical properties of the films was carried out. We observed that, with increasing RF power the growth rate increased, while it decreased with increasing gas pressure. As mentioned above, the films were polycrystalline in nature with a strong preferred (002) orientation. The intrinsic compressive stress was found to decrease with both increasing RF power and gas pressure, and near stress-free film was obtained at 200 W RF power and 2 × 10− 1 Pa gas pressure. The obtained ZnO:Al films, not only have an average transmittance greater than 90% in the visible region, but also have an optical band gap between 3.33 and 3.47 eV depending on the sputtering parameters. Moreover, a low value of the electrical resistivity (~ 1.25 × 10− 3 Ω cm) was obtained for the film deposited at 200 W and 2 × 10− 3 mbar.  相似文献   

9.
ZnO thin films, codoped with Al and Ga, were prepared on fused quartz (FQ) and cyclo-olefin polymer (COP) substrates using a radial frequency magnetron sputtering technique at room temperature, without the introducing of oxygen. The elemental distributions of Al, Ga, Zn and O throughout the films were found and no compositional variation in working pressure was observed. A resistivity of 0.03-4.07 Ω cm in AGZ/FQ films (Fig. 2b and 0.04-5.73 Ω cm in AGZ/COP films as well as a transmittance of above 85% were obtained by appropriate control of the working pressure. Compared with the band gap energy of single crystal ZnO, the band gap energy of the AGZ/FQ thin film was somewhat higher. The band gap energy of the AGZ/FQ films showed a tendency to increase with the working pressure employed.  相似文献   

10.
Highly conducting and transparent thin films of tungsten-doped ZnO (ZnO:W) were prepared on glass substrates by direct current (DC) magnetron sputtering at low temperature. The effect of film thickness on the structural, electrical and optical properties of ZnO:W films was investigated. All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The electrical resistivity first decreases with film thickness, and then increases with further increase in film thickness. The lowest resistivity achieved was 6.97 × 10−4 Ω cm for a thickness of 332 nm with a Hall mobility of 6.7 cm2 V−1 s−1 and a carrier concentration of 1.35 × 1021 cm−3. However, the average transmittance of the films does not change much with an increase in film thickness, and all the deposited films show a high transmittance of approximately 90% in the visible range.  相似文献   

11.
Jung-Min Kim 《Thin solid films》2010,518(20):5860-1267
100 nm Al-doped ZnO (AZO) thin films were deposited on polyethylene naphthalate (PEN) substrates with radio frequency magnetron sputtering using 2 wt.% Al-doped ZnO target at various deposition conditions including sputtering power, target to substrate distance, working pressure and substrate temperature. When the sputtering power, target to substrate distance and working pressure were decreased, the resistivity was decreased due to the improvement of crystallinity with larger grain size. As the substrate temperature was increased from 25 to 120 °C, AZO films showed lower electrical resistivity and better optical transmittance due to the significant improvement of the crystallinity. 2 wt.% Al-doped ZnO films deposited on glass and PEN substrates at sputtering power of 25 W, target to substrate distance of 6.8 cm, working pressure of 0.4 Pa and substrate temperature of 120 °C showed the lowest resistivity (5.12 × 10− 3 Ω cm on PEN substrate, 3.85 × 10− 3 Ω cm on glass substrate) and high average transmittance (> 90% in both substrates). AZO films deposited on PEN substrate showed similar electrical and optical properties like AZO films deposited on glass substrates.  相似文献   

12.
In this paper, we report the deposition of ZnO thin film on poly propylene carbonate (PPC) plastic substrate by sputtering technique. The structural, optical and electrical properties of the ZnO thin film were investigated. The ZnO thin film deposited on PPC plastic has a smooth surface morphology as revealed by scanning electron microscopy (SEM). X-ray diffraction (XRD) measurement shows that the ZnO thin film has preferential orientation along the c-axis with strong peak observed at 2θ? = 34.25o, while the photoluminescence (PL) spectrum shows strong UV emission peak at 385 nm. Spectrophotometry measurements reveal that transmission values of the film are low at wavelength shorter than 380 nm. Current-voltage measurements show that the dark- and photocurrents were found to be 6.11 and 89.3 μA, respectively, under dark and illuminated conditions at 5 V.  相似文献   

13.
T. Kanzawa  H. Tsuji  J. Ishikawa 《Vacuum》2008,83(3):589-591
Hafnium nitride (HfN) thin films were prepared on Si (100) substrates by radio frequency magnetron sputtering with a compound target. Nitrogen composition, work function and electrical resistivity were investigated to evaluate thin film properties. Nitrogen composition and work function had little dependence on argon gas pressure and radio frequency power. Electrical resistivity showed strong correlation with the substrate temperature. When thin films were fabricated at room temperature, the electrical resistivity was 100 μΩ cm, and it became lower with an increase in the substrate temperature. When the films were fabricated at 600 °C, the resistivity became less than 50 μΩ cm.  相似文献   

14.
Zinc oxide (ZnO) and indium doped ZnO (IZO) thin films with different indium compositions were grown by pulsed laser deposition technique on corning glass substrate. The effect of indium concentration on the structural, morphological, optical and electrical properties of the film was studied. The films were oriented along c-direction with wurtzite structure and highly transparent with an average transmittance of more than 80% in the visible wavelength region. The energy band gap was found to decrease with increasing indium concentration. High transparency makes the films useful as optical windows while the high band gap values support the idea that the film could be a good candidate for optoelectronic devices. The value of resistivity observed to decrease initially with doping concentration and subsequently increases. IZO with 1% of indium showed the lowest resistivity of 2.41 × 10−2 Ω cm and large transmittance in the visible wavelength region. Especially 1% IZO thin film was observed to be a suitable transparent conducting oxide material to potentially replace indium tin oxide.  相似文献   

15.
Recently, transparent conducting oxide thin films have attracted attention for the application to transparent conducting electrodes. In this work, we evaluated the uniformity of electrical, optical and structural properties for gallium doped zinc oxide thin films prepared on the 10 × 10 cm2 silica glass substrate by pulsed laser deposition. The resistivity, carrier concentration, mobility, bonding state and atomic composition of the film were uniform along in-plane and depth direction over the 10 × 10 cm2 area of the substrate. The film showed the average transmittance of 81-87%, resistivity of 1.4 × 10− 3 Ω cm, carrier concentration of 9.7 × 1020/cm3 and mobility of 5 cm2/Vs in spite of the amorphous X-ray diffraction pattern. The gradual thickness distribution was found, however, the potential for large-area and low temperature deposition of transparent conducting oxide thin film using pulsed laser deposition method was confirmed.  相似文献   

16.
C. Guillén  J. Herrero 《Vacuum》2008,82(6):668-672
Aluminium-doped zinc oxide (AZO) thin films have been prepared by pulsed magnetron sputtering from a ceramic oxide target in pure argon atmosphere. Sputtering processes were performed in current or voltage regulation modes at different pulsing frequencies up to 200 kHz. Several growth parameters (discharge power, substrate temperature and growth rate) as well as AZO film properties (crystalline structure, optical transmittance and electrical characteristics) have been measured and analysed as a function of the current or voltage applied, the pulsing frequency and the operation time. By adjusting these deposition parameters, AZO layers with resistivity as low as 1.0×10−3 Ωcm and average visible transmittance above 85% have been obtained at growth rate in the range 70-80 nm/min, at substrate temperatures below 150 °C.  相似文献   

17.
Aluminum doped ZnO thin films (ZnO:Al) were deposited on glass and poly carbonate (PC) substrate by r.f. magnetron sputtering. In addition, the electrical, optical properties of the films prepared at various sputtering powers were investigated. The XRD measurements revealed that all of the obtained films were polycrystalline with the hexagonal structure and had a preferred orientation with the c-axis perpendicular to the substrate. The ZnO:Al films were increasingly dark gray colored as the sputter power increased, resulting in the loss of transmittance. High quality films with the resistivity as low as 9.7 × 10− 4 Ω-cm and transmittance over 90% have been obtained by suitably controlling the r.f. power.  相似文献   

18.
Transparent and conductive indium tin oxide (ITO) thin films were deposited onto polyethylene terephthalate (PET) by d.c. magnetron sputtering as the front and back electrical contact for applications in flexible displays and optoelectronic devices. In addition, ITO powder was used for sputter target in order to reduce the cost and time of the film formation processes. As the sputtering power and pressure increased, the electrical conductivity of ITO films decreased. The films were increasingly dark gray colored as the sputtering power increased, resulting in the loss of transmittance of the films. When the pressure during deposition was higher, however, the optical transmittance improved at visible region of light. ITO films deposited onto PET have shown similar optical transmittance and electrical resistivity, in comparison with films onto glass substrate. High quality films with resistivity as low as 2.5 × 10− 3 Ω cm and transmittance over 80% have been obtained on to PET substrate by suitably controlling the deposition parameters.  相似文献   

19.
Boron nitride thin films were grown on α-Al2O3 (0 0 1) substrates by reactive magnetron sputtering. Infrared attenuated total reflection (ATR) spectra of the films gave an intense signal associated with in-plane B-N stretching TO mode of short range ordered structure of BN hexagonal sheets. X-ray diffraction for the film prepared at a low working pressure (ca. 1 × 10−3 Torr) gave a diffraction peak at slightly lower angle than that corresponding to crystal plane h-BN (0 0 2). It is notable that crystal thickness calculated from X-ray peak linewidth (45 nm) was close to film thickness (53 nm), revealing well developed sheet stacking along the direction perpendicular to the substrate surface. When the substrates of MgO (0 0 1) and Si (0 0 1) were used, the short-range ordered structure of h-BN sheet was formed but the films gave no X-ray diffraction. The film showed optical band gap of 5.9 eV, being close to that for bulk crystalline h-BN.  相似文献   

20.
Fluorine-doped ZnO transparent conducting thin films were prepared by radio frequency magnetron sputtering at 150 °C on glass substrate. Thermal annealing in vacuum was used to improve the optical and electrical properties of the films. X-ray patterns indicated that (002) preferential growth was observed. The grain size of F-doped ZnO thin films calculated from the full-width at half-maximum of the (002) diffraction lines is in the range of 18-24 nm. The average transmittance in visible region is over 90% for all specimens. The specimen annealed at 400 °C has the lowest resistivity of 1.86 × 10− 3 Ω cm, the highest mobility of 8.9 cm2 V− 1 s− 1, the highest carrier concentration of 3.78 × 1020 cm− 3, and the highest energy band gap of 3.40 eV. The resistivity of F-doped ZnO thin films increases gradually to 4.58 × 10− 3 Ω cm after annealed at 400 °C for 4 h. The variation of the resistivity is slight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号