首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In the present study stoichiometric, b-axis oriented La5Ca9Cu24O41 thin films were grown by pulsed laser deposition on (1 1 0) SrTiO3 substrates in the temperature range 600-750 °C. High resolution transmission electron microscopy was employed to investigate the growth mechanism and the epitaxial relationship between the SrTiO3 substrates and the La5Ca9Cu24O41 films grown at 700 °C. The 3-ω method was used to measure the cross-plane thermal conductivity of La5Ca9Cu24O41 films in the temperature range 50-350 K. The observed glass-like behavior is attributed to atomic-scale defects, grain boundaries and an interfacial layer formed between film and substrate.  相似文献   

2.
Epitaxial Bi2Sr2Co2Oy thin films with excellent c-axis and ab-plane alignments have been grown on (001) LaAlO3 substrates by chemical solution deposition using metal acetates as starting materials. Microstructure studies show that the resulting Bi2Sr2Co2Oy films have a well-ordered layer structure with a flat and clear interface with the substrate. Scanning electron microscopy of the films reveals a step-terrace surface structure without any microcracks and pores. At room temperature, the epitaxial Bi2Sr2Co2Oy films exhibit a resistivity of about 2 mΩ cm and a seebeck coefficient of about 115 μV/K comparable to those of single crystals.  相似文献   

3.
High quality Tl2Ba2CaCu2O8 (Tl-2212) superconducting thin films are prepared on both sides of 2 in. LaAlO3(0 0 1) substrates by off-axis magnetron sputtering and post-annealing process. XRD measurements show that these films possess pure Tl-2212 phase with C-axis perpendicular to the substrate surface. The thickness unhomogeneity of the whole film on the 2 in. wafer is less than 5%. The superconducting transition temperatures Tcs of the films are around 105 K. At zero applied magnetic field, the critical current densities Jcs of the films on both sides of the wafer were measured to be above 2 × 106 A/cm2 at 77 K. The microwave surface resistance Rs of film was as low as 350 μΩ at 10 GHz and 77 K. In order to test the suitability of Tl-2212 thin films for passive microwave devices, 3-pole bandpass filters have been fabricated from double-sided Tl-2212 films on LaAlO3 substrates.  相似文献   

4.
Epitaxial thin films of SnFe2O4 are deposited on sapphire substrate by ablating the sintered SnFe2O4 target with a KrF excimer laser (λ = 248 nm and pulsed duration of 20 ns). X-ray diffraction study reveals that SnFe2O4 films are epitaxial along (222) direction. The optical bandgap of SnFe2O4 film is estimated using transmittance vs. wavelength data and is observed to be 2.71 eV. The presence of hysteresis loop at room temperature in magnetization vs. field plot indicates the ferromagnetic behavior of the film. It is observed that the coercive field and remnant magnetization decrease with increase in temperature.  相似文献   

5.
Epitaxial thin films of a heterostructure with Bi4Ti3O12(BIT)/SrTiO3(ST) were successfully grown with a bottom electrode consisting of La0.5Sr0.5CoO3(LSCO) on MgO(001) substrates using pulsed laser deposition. The grown BIT and ST (001) planes were parallel to the growth surface with the orientation relationship of BIT <110>//ST <010>. In the as-deposited film, the BIT (001) plane appeared to expand to relieve a lattice mismatch with the ST (001) plane. However, annealing for 20-40 min induced the BIT (001) plane to contract horizontally with its c-axis expanding, which was associated with a local perturbation in the layer stacking of the BIT structure. This structural distortion was reduced in the film annealed for 1 h, with restoration of the periodicity of the layer stacking. Correspondingly, the dielectric constant of the as-deposited film was increased from 292 to 411 by annealing for 1 h. In parallel, the film was paraelectric but became more ferroelectric, with the remanent polarization and the coercive field changing from 0.1 μC/cm2 and 14 kV/cm to 1.7 μC/cm2 and 69 kV/cm, respectively.  相似文献   

6.
Multiferroic BiFeO3/Bi4Ti3O12 (BFO/BTO) double-layered film was fabricated on a Pt(111)/Ti/SiO2/Si(100) substrate by a chemical solution deposition method. The effect of an interfacial BTO layer on electrical and magnetic properties of BFO was investigated by comparing those of pure BFO and BTO films prepared by the same condition. The X-ray diffraction result showed that no additional phase was formed in the double-layered film, except BFO and BTO phases. The remnant polarization (2Pr) of the double-layered film capacitor was 100 μC/cm2 at 250 kV/cm, which is much larger than that of the pure BFO film capacitor. The magnetization-magnetic field hysteresis loop revealed weak ferromagnetic response with remnant magnetization (2Mr) of 0.4 kA/m. The values of dielectric constant and dielectric loss of the double-layered film capacitor were 240 and 0.03 at 100 kHz, respectively. Leakage current density measured from the double-layered film capacitor was 6.1 × 10− 7 A/cm2 at 50 kV/cm, which is lower than the pure BFO and BTO film capacitors.  相似文献   

7.
Polyimide (PI) nanocomposites with different proportions of Al2O3 were prepared via two-step reaction. Silicon nitride (Si3N4) was deposited on PI composite films by a RF magnetron sputtering system and used as a gas barrier to investigate the water vapor transmission rate (WVTR). The thermal stability and mechanical properties of a pure PI film can be improved obviously by adding adequate content of Al2O3. At lower sputtering pressure (4 mTorr), the PI/Al2O3 hybrid film deposited with Si3N4 barrier film exhibits denser structure and lower root mean square (RMS) surface roughness (0.494 nm) as well as performs better in preventing the transmission of water vapor. The lowest WVTR value was obtained from the sample, 4 wt.%Al2O3-PI hybrid film deposited with Si3N4 barrier film with the thickness of 100 nm, before and after bending test. The interface bonding, Al-N and Al-O-Si, was confirmed with the XPS composition-depth profile.  相似文献   

8.
The electrical characteristics of Ti-O/Ta2O5 films sputtered on Ta/Ti/Al2O3 substrate were investigated. Ta (tantalum) was used for the bottom and upper electrodes for the purpose of simplifying the fabrication process and Al2O3 substrates were used, which are needed in integral passive devices. Ta/Ti-O/Ta2O5/Ta/Ti/Al2O3 capacitors were annealed at 700 °C for 60 s in vacuum. The X-ray diffraction pattern (XRD) results showed that as-deposited Ta had a highly preferred orientation, but Ta2O5 film had amorphous structure, which was transformed to crystallization structure by rapid thermal heat treatment. We examined the log J-E and C-V characteristics of the dielectric thin films deposited on the Ta bottom electrode. From these results, we concluded that the leakage current could be reduced by introducing a Ti-O buffer layer. The conduction mechanisms of Ta/Ti-O/Ta2O5/Ta/Ti/Al2O3 capacitors could be interpreted appropriately by hopping conduction in lower field (E<1×105 V/cm) and space-charge-limited current in higher fields (1×105 V/cm<E).  相似文献   

9.
Jin Won Kim 《Thin solid films》2010,518(22):6514-6517
V-doped K0.5Bi4.5Ti4O15 (K0.5Bi4.5  x/3Ti4  xVxO15, KBTiV-x, x = 0.00, 0.01, 0.03, and 0.05) thin films were prepared on a Pt(111)/Ti/SiO2/Si(100) substrate by a chemical solution deposition method. The thin films were annealed by using a rapid thermal annealing process at 750 °C for 3 min in an oxygen atmosphere. Among them, KBTiV-0.03 thin film exhibited the most outstanding electrical properties. The value of remnant polarization (2Pr) was 75 μC/cm2 at an applied electric field of 366 kV/cm. The leakage current density of the thin film capacitor was 5.01 × 108 at 100 kV/cm, which is approximately one order of magnitude lower than that of pure K0.5Bi4.5Ti4O15 thin film capacitor. We found that V doping is an effective method for improving the ferroelectric properties of K0.5Bi4.5Ti4O15 thin film.  相似文献   

10.
Pure and yttrium substituted CaCu3Ti4 − xYxO12 − x / 2 (x = 0, 0.02, 0.1) thin films were prepared on boron doped silica substrate employing chemical solution deposition, spin coating and rapid thermal annealing. The phase and microstructure of the sintered films were examined using X-ray diffraction and scanning electron microscopy. Dielectric properties of the films were measured at room temperature using electrochemical impedance spectroscopy. Highly ordered polycrystalline CCTO thin film with bimodal grain size distribution was achieved at a sintering temperature of 800 °C. Yttrium doping was found to have beneficial effects on the dielectric properties of CCTO thin film. Dielectric parameters obtained for a CaCu3Ti4 − xYxO12 − x / 2 (x = 0.02) film at 1 KHz were k ∼ 2700 and tan δ ∼ 0.07.  相似文献   

11.
ZnGa2O4 thin film phosphors have been deposited using a pulsed laser deposition technique on Si (1 0 0) and Al2O3 (0 0 0 1) substrates at a substrate temperature of 550 °C with various oxygen pressures 100, 200 and 300 mTorr, and various substrate temperatures of 450, 550 and 650 °C with a fixed oxygen pressure of 100 mTorr. The films grown under different deposition conditions have been characterized using microstructural and luminescent measurements. Under the different substrate temperatures, ZnGa2O4 thin films show the different crystallinity and luminescent intensity. The crystallinity and photoluminescence (PL) of the ZnGa2O4 films are highly dependent on the deposition conditions, in particular, oxygen pressure, substrate temperature, a kind of substrates. The luminescent spectra show a broad band extending from 350 to 600 nm peaking at 460 nm. The PL brightness data obtained from the ZnGa2O4 films grown under optimized conditions have indicated that the sapphire is one of the most promised substrates for the growth of high quality ZnGa2O4 thin film phosphor.  相似文献   

12.
Al foil was coated with niobium oxide by cathodic electroplating and anodized in a neutral boric acid solution to achieve high capacitance in a thin film capacitor. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) revealed the niobium oxide layer on Al to be a hydroxide-rich amorphous phase. The film was crystalline and had stoichiometric stability after annealing at temperatures up to 600 °C followed by anodizing at 500 V, and the specific capacitance of the Nb2O5-Al2O3 composite oxide was approximately 27% higher than that of Al2O3 without a Nb2O5 layer. The capacitance was quite stable to the resonance frequency. Overall, the Nb2O5-Al2O3 composite oxide film is a suitable material for thin film capacitors.  相似文献   

13.
F. Gao  P.F. Hao 《Thin solid films》2011,519(22):7750-7753
A composite film of nanocrystalline Si (nc-Si) embedded in (Al2O3 + SiO2) has been prepared on a quartz substrate by thermally evaporating a 400 nm thick Al film on a quartz substrate and annealing in air at 580 °C for 1 h. During annealing, the Al reacts with the SiO2 of the quartz substrate and produces nc-Si, which is embedded in the (Al2O3 + SiO2) film. The average size of nc-Si is ~ 22 nm and the thickness of the nc-Si:(Al2O3 + SiO2) composite film is ~ 810 nm. It is found that the prepared film is thermoelectric with a Seebeck coefficient of − 624 μV/K at 293 K and − 225 μV/K at 413 K.  相似文献   

14.
The effect of Al2O3 content on the structure, electrical properties, magnetic properties, and interparticle exchange interactions of (Fe65Co35)1 − x(Al2O3)x films with Al2O3 volume fractions x ranging from 0 to 0.50 was systematically investigated. Among the films with x between 0 and 0.25, the lowest coercivity of 0.56 kA/m was achieved in the (Fe65Co35)0.82(Al2O3)0.18 film. This is ascribed to the strongest exchange interactions between the Fe65Co35 nanoparticles in this film. Combined with the microstructure analysis of the (Fe65Co35)1 − x(Al2O3)x films, the modified Herzer's model was extended to interpret the variation of the coercivity with x and analyze the effect of the exchange interactions between the Fe65Co35 nanoparticles on the magnetic softness. The remanence curves confirm the existence of the exchange interactions and reveal the evolution of the exchange interaction strength with Al2O3 content.  相似文献   

15.
A novel method for preparing Al2O3/ZrO2 (Y2O3) eutectic was developed by combining combustion synthesis with melt-casting under ultra-high gravity (CSMC-UHG). The application of UHG = 800 g resulted in a high relative density of 99.8%, and an orientation-growth along the UHG direction. The microstructure was composed of aligned growth regimes containing a triangular dispersion of orderly ZrO2 rods in Al2O3 matrix with a spacing of 300 nm. The eutectic had a high fracture toughness up to 17.9 MPa·m1/2, which was mainly attributed to the nanostructure and the elastic bridge effects of the aligned ZrO2 rods.  相似文献   

16.
A colossal magnetocapacitance in magnetic fields was observed near the Curie temperature Tc = 220 K of La5/8Ca3/8MnO3 for the BiFeO3/La5/8Ca3/8MnO3 epitaxial film. It was found that the magnetocapacitance increases with increasing magnetic fields and reaches a maximum up to 1100% enhancement around Tc at 10 T. From the analysis of the dielectric relaxation, one can see that the behavior of relaxation time τ above Tc differs from that below Tc, and the value of τ decreases with increasing magnetic fields. This colossal magnetocapacitance effect near room temperature in BiFeO3/La5/8Ca3/8MnO3 may have potential applications in multifunctional microelectronic device.  相似文献   

17.
We report on the synthesis, structure and magnetic properties of a novel exchange bias system with Cr2O3/CrO2/Cr2O5 interfaces. Chromium oxide particles with mixed chromium valences were prepared by sintering CrO3 in air. X-ray diffraction patterns show that CrO3 lost its oxygen gradually with increasing temperature and time through Cr3O8, Cr2O5, CrO2, and finally Cr2O3 at temperatures above 760 K. X-ray photoelectron spectra indicate a low CrO2 content and a binding energy of 579.3 eV for Cr 2p3/2 photoelectrons in Cr2O5. Chromium dioxide was found to stably coexist with Cr2O3 and Cr2O5 in the particles. Magnetic measurements show hysteresis loop shifts in the sample, indicating an exchange bias induced by antiferromagnetic Cr2O3/Cr2O5 in ferromagnetic CrO2. An exchange bias of 9 mT at 5 K and a coercivity of 26.3 mT were observed in the chromium oxide particles containing CrO2.  相似文献   

18.
Influence of incorporation of Ga in amorphous In-Zn-O transparent conductive oxide films was investigated as a function of Zn/(Zn + In). For In-Zn-O films with no Ga2O3, the range of Zn/(Zn + In) ratio where the amorphous phase appears became narrow at a substrate temperature of 250 °C. With increasing Ga2O3 quantity, amorphous films were obtained even at a high substrate temperature of 250 °C in a wider range of Zn/(Zn + In) than that of In-Zn-O films with no Ga2O3. This means that the trend of crystallization at higher substrate temperature was disturbed with additional Ga incorporation. For the film deposited from ZnO:Ga (Ga2O3: 4.5-7.5 wt%) and In2O3 targets, we obtained a resistivity of 2.8 × 10−4 Ω cm, nearly the same value as that for an In-Zn-O film with no Ga2O3. The addition of more than 7.5 wt% Ga2O3 induced a widening of the optical band gap.  相似文献   

19.
C. Araújo  M. Aguiar 《Vacuum》2008,82(12):1437-1440
Cobalt ferrite (CoFe2O4) thin films have been deposited on Si (001) substrates, with different substrate temperatures (Tdep = 25 °C − 600 °C). The films were prepared by pulsed laser ablation with a KrF excimer laser (wavelength λ = 248 nm). The oxygen pressure during deposition was 2 × 10−2 mbar. The films structure was studied by X-ray diffraction (XRD) and their surface was examined by scanning electron microscopy (SEM). The magnetic properties were measured with a vibrating sample magnetometer (VSM). For low deposition temperatures, the films presented a mixture of a CoFe2O4 phase, with the cubic spinel structure, and cobalt and iron antiferromagnet oxides with CoO and FeO stoichiometries. As the deposition temperature increased, the CoO and FeO relative content strongly decreased, so that for Tdep = 600 °C the films were composed mainly by polycrystalline CoFe2O4. The magnetic hysteresis cycles measured in the films were horizontally shifted due to an exchange coupling field (Hexch) originated by the presence of the antiferromagnetic phases. The exchange field decreased with increasing deposition temperature, and was accompanied by a corresponding increase of the coercivity and remanence ratio of the cycles. This behavior was due to the strong reduction of the CoO and FeO content, and to the corresponding dominance of the CoFe2O4 phase on the magnetic properties of the thin films.  相似文献   

20.
Ferroelectric Na0.5La0.5Bi4Ti4O15 (NaLaBTi) thin films were prepared by a chemical solution deposition method. The NaLaBTi thin films annealed at 750 °C under oxygen atmosphere were randomly oriented polycrystalline. Electrical properties of the NaLaBTi thin films were compared to Na0.5Bi4.5Ti4O15 thin films and better properties were observed in the NaLaBTi thin films. Remnant polarization (2Pr) and coercive electric field (2Ec) were 43 µC/cm2 and 204 kV/cm at an applied electric field of 478 kV/cm, respectively. Leakage current density was 1.95 × 10− 6 A/cm2 at 100 kV/cm. Dielectric constant and dielectric loss were 805 and 0.05 at 1 kHz, respectively. Switchable polarization was suppressed by 15% after 1.44 × 1010 switching cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号