首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation behavior of CrN/AlN superlattice films with different bilayer periods (Λ), Al/(Cr + Al) ratios, and crystal structures of the AlN layer was investigated. The films were deposited using a pulsed dc closed field unbalanced magnetron sputtering system. The oxidation tests were carried out in the ambient air at elevated temperatures from 700 to 1100 °C for 1 h. The changes in the crystal phase, microstructure and hardness of the films after the oxidation tests were characterized using X-ray diffraction, scanning electron microscopy and nanoindentation, respectively. When both CrN and AlN layers were in the NaCl cubic structure, the film with Λ = 3.8 nm and an Al/(Cr + Al) ratio of 0.6 exhibited a superior oxidation resistance than the film with Λ = 12.4 nm and an Al/(Cr + Al) ratio of 0.19. The film with Λ = 3.8 nm maintained the nanolayered structure with an oxidation temperature up to 1000 °C by the protection of a thin and dense X-ray amorphous oxide layer. In contrast, when the AlN layers were in the Wurzite hexagonal structure, the film with Λ = 22.5 nm and an Al/(Cr + Al) ratio of 0.67 exhibited poor oxidation resistance. The film lost the superlattice structure at 800 °C and was completely oxidized at 1000 °C due to the formation of a porous crystalline oxide layer on the surface.  相似文献   

2.
Cr/CrN/CrAlN, CrN/CrAlN and Cr/CrN thin layers were deposited by PVD (Physical Vapor Deposition). The multilayers were obtained from the combined deposition of different layers Cr, CrN and CrAlN thick films on on AISI4140 steel and silicon substrates at 200 °C, and evaluated with respect to fundamental properties such as structure and thermal properties. Cr, CrN and CrAlN single layers were also prepared for comparison purposes. The structural and morphological properties of PVD layers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with EDS + WDS microanalyses, stresses were determined by the Newton’s rings methods using the Stoney’s equation and surface hardening and hardness profiles were evaluated by micro hardness measurements. The XRD data and HRTEM showed that both the Cr/CrN, CrN/CrAlN and Cr/CrN/CrAlN multilayer coatings exhibited B1NaCl structure with a prominent reflection along (200) plane, and CrAlN sub-layer microstructures composed of nanocrystallites uniformly embedded in an amorphous matrix. The innovation of this work was to use the thickness of three different coating types to determine the thermal properties. Furthermore, an empirical equation was developed for the thermal properties variations with temperature of AISI4140 steel coated with different multilayer coatings. The thermal conductivity of CrAlN single layered was lower than the multilayer and the bulk material AISI4140. Moreover, the influences of structure and composition of the multilayer coatings on the thermal properties are discussed.The thermal conductivity of nanoscale thin film is remarkably lower than that of bulk materials because of its various size effects.  相似文献   

3.
The electrochemical corrosion cells will be generated from the possible pinholes of the promising CrN and TiN coatings in a PEMFC environment. To prevent the elution of possible pinholes, CrN/TiN multi-coatings on SS have been considered. This study examined the electrochemical behavior of three CrN/TiN coatings on 316L stainless steel deposited at different CrN/TiN thickness ratios by rf-magnetron sputtering as potential bipolar plate materials. Potentiodynamic tests of CrN/TiN-coated 316L stainless steel carried out in a 1 M H2SO4 + 2 ppm HF solution at 70 °C revealed a significantly lower corrosion current density than that of uncoated 316L SS, as well as a decrease in the corrosion current density with decreasing inner-layer CrN thickness. Electrochemical impedance spectroscopy also showed that the CrN/TiN-coated 316L SS sample had higher charge transfer resistance than the uncoated 316L SS sample, which increased with decreasing inner-layer CrN thickness. This was attributed to the crystalline-refined CrN/TiN(200).  相似文献   

4.
AlxTi1 − xN and CrN have been widely used as a protective coating material in many types of tools and mechanical components because of high wear performance and high temperature resistance. In this study, the high temperature oxidation behavior of Al0.63Ti0.37N and multilayered Al0.63Ti0.37N/CrN coatings was studied. These coatings were synthesized by a cathodic-arc deposition system with plasma enhanced duct equipment. The nanolayer thickness and alloy content of the deposited multilayered coating were correlated with the emission rate of alloy cathode materials. The multilayered Al0.63Ti0.37N/CrN coating revealed a laminate structure with stacking of Al0.63Ti0.37N and CrN layers, and the periodic thickness (Λ) was 16 nm. For the high temperature oxidation test, the coated samples were annealed in the temperature range of 700-1000 °C in air for 2 h. The multilayered Al0.63Ti0.37N/CrN possessed much thinner oxide layer thickness than Al0.63Ti0.37N. Even after oxidation at 1000 °C, the multilayered Al0.63Ti0.37N/CrN still retained their crystalline structure. An interface effect served as a barrier, and retarded the diffusion of oxygen into the multilayered Al0.63Ti0.37N/CrN. Thus, the multilayered Al0.63Ti0.37N/CrN showed a high temperature oxidation resistance superior to the Al0.63Ti0.37N.  相似文献   

5.
The residual stress in amorphous silicon films deposited by evaporation is investigated with different substrate temperatures. The stress measured from all the films studied in this paper is tensile. The level of stress decreases from 580 MPa to 120 MPa with increasing substrate temperature from 60 °C to 350 °C. When the film becomes thicker, strain increases and cracks are formed for stress relaxation. 10 µm thick amorphous Si films are deposited at 350 °C without cracks. This cracking behavior is theoretically studied and confirmed by experiment.  相似文献   

6.
TiAlN films were deposited on silicon (1 1 1) substrates from a TiAl target using a reactive DC magnetron sputtering process in Ar+N2 plasma. Films were prepared at various nitrogen flow rates and TiAl target compositions. Similarly, CrN films were prepared from the reactive sputtering of Cr target. Subsequently, nanolayered TiAlN/CrN multilayer films were deposited at various modulation wavelengths (Λ). X-ray diffraction (XRD), energy dispersive X-ray analysis, nanoindentation and atomic force microscopy were used to characterize the films. The XRD confirmed the formation of superlattice structure at low modulation wavelengths. The maximum hardness of TiAlN/CrN multilayers was 3900 kg/mm2, whereas TiAlN and CrN films exhibited maximum hardnesses of 3850 and 1000 kg/mm2, respectively. Thermal stability of TiAlN and TiAlN/CrN multilayer films was studied by heating the films in air in the temperature range (TA) of 500-900 °C for 30 min. The XRD spectra revealed that TiAlN/CrN multilayers were stable up to 800 °C and got oxidized substantially at 900 °C. On the other hand, the TiAlN films were stable up to 700 °C and got completely oxidized at 800 °C. Nanoindentation measurements performed on the films after heat treatment showed that TiAlN retained a hardness of 2200 kg/mm2 at TA=700 °C and TiAlN/CrN multilayers retained hardness as high as 2600 kg/mm2 upon annealing at 800° C.  相似文献   

7.
17-4PH stainless steel was plasma nitrocarburized at 460 °C for improving its mechanical properties without compromising its desirable corrosion resistance. The plasma nitrocarburized layers were studied by optical microscope, X-ray diffractometer, microhardness tester, pin-on-disc tribometer and the anodic polarization method in a 3.5% NaCl solution. The experimental results show that the nitrocarburized layer depths increase with increasing duration time and the layers growth conform approximately to the parabolic law. The phases in the nitrocarburized layer are mainly of γ′-Fe4N and α′-Fe with traces of CrN phase. The surface hardness of the modified specimen is more than 1200 HV, which is three times higher than that of untreated one. The friction coefficient and corrosion resistance of the specimen can be apparently improved by plasma nitrocarburizing. With the increase of duration time, the surface hardness slightly decreases whereas the friction coefficient and corrosion resistance of the modified specimen are first increase and then decrease. The 8 h treated specimen has the lowest friction coefficient and the best corrosion resistance in the present test conditions.  相似文献   

8.
Commercially available carbon-based thin films consisting of single layers of amorphous diamond-like carbon or multilayers of crystalline TiAlN or CrN with diamond-like carbon top coatings were evaluated in relation to their electrochemical corrosion behavior in chloride ions containing electrolytes. The hardened working steel (an alloy of 0.9% C, 4.1% Cr, 4.9% Mo, 1.8% V, 6.4% W) was used as a substrate material.The potentiodynamic corrosion behavior of coated samples was tested in 3.5 wt.% NaCl solution and Hank's balanced body solution, HBBS (0.89 wt.% NaCl, further chlorides, sulfates, carbonates and phosphates). The multi-layers TiAlN + a-C:H:W and CrN + a-C:H:W exhibited only a minor improvement in corrosion resistance. Single layers of amorphous diamond-like carbon coating without hydrogen (a-C) spall off during the corrosion tests in chloride containing media. A minor improvement of the corrosion resistance is possible. The a-C:H and the a-C:H:Si, which contain hydrogen, showed the best corrosion resistance with a 100 times lower corrosion current density.  相似文献   

9.
CrN/a-CNx nanolayered coatings have been deposited by DC reactive magnetron sputtering of pure Cr and graphite targets. The total thickness is 1 μm and that of a-CNx layers is kept constant at 3.5 nm. The period (bilayer thickness) is in the range 8-16 nm. CrN and a-CNx layers are crystalline and amorphous respectively. The decrease of CrN layers’ thickness (decrease of period) in the stack leads to refinement of CrN microstructure associated with (200) preferred orientation. The hardness of nanolayered films is independent of the period’s thickness, while internal compressive stress, which remains between that of each elementary layer, follows an evolution close to that of the law of mixtures. The best tribological behaviours are reached for a periods’ thickness of 8 nm.  相似文献   

10.
Nanolayered TiN/CrN multilayer coatings were deposited on silicon substrates using a reactive DC magnetron sputtering process at various modulation wavelengths (Λ), substrate biases (VB) and substrate temperatures (TS). X-ray diffraction (XRD), nanoindentation and atomic force microscopy (AFM) were used to characterize the coatings. The XRD confirmed the formation of superlattice structure at low modulation wavelengths. The maximum hardness of the TiN/CrN multilayers was 3800 kg/mm2 at Λ=80  Å, VB=−150 V and TS=400°C. Thermal stability of TiN, CrN and TiN/CrN multilayer coatings was studied by heating the coatings in air in the temperature range (TA) of 400-800°C. The XRD data revealed that TiN/CrN multilayers retained superlattice structure even up to 700°C and oxides were detected only after TA?750°C, whereas for single layer TiN and CrN coatings oxides were detected even at 550°C and 600°C, respectively. Nanoindentation measurements showed that TiN/CrN multilayers retained a hardness of 2800 kg/mm2 upon annealing at 700°C, and this decrease in the hardness was attributed to interdiffusion at the interfaces.  相似文献   

11.
In this study plasma nitriding is applied on nickel–aluminum composite coating, deposited on steel substrate. Ni–Al composite layers were fabricated by electro-deposition process in Watt’s bath containing Al particles. Electrodeposited specimens were subjected to plasma atmosphere comprising of N2–20% H2, at 500 °C, for 5 h. The surface morphology investigated, using a scanning electron microscope (SEM) and the surface roughness was measured by use of contact method. Chemical composition was analyzed by X-ray fluorescence spectroscopy and formation of AlN phase was confirmed by X-ray diffraction. The corrosion resistance of composite coatings was measured by potentiodynamic polarization in 3.5% NaCl solution. The obtained results show that plasma nitriding process leads to an increase in microhardness and corrosion resistance, simultaneously.  相似文献   

12.
Atomic Vapor Deposition technique was applied for the depositions of Ti-Ta-O oxide films for Metal-Insulator-Metal capacitors used in back-end of line for Radio Frequency applications. Composition, crystallinity, thermal stability and electrical properties were studied. Ti-Ta-O films, with the ratio of Ta/Ti ~ 1.5, deposited at 400 °C on TiN electrodes, were amorphous and possessed a dielectric constant of 50 with low voltage linearity coefficients and leakage currents densities as low as 10− 7 A/cm2 at 1 V. The films, deposited on Si wafers, were amorphous up to the annealing temperature of 700 °C and crystallized in orthorhombic Ta2O5 phase at higher temperatures.  相似文献   

13.
The nano-scale chemical distribution and microstructure of a nitride based wear and oxidation resistant coating prepared by unbalanced magnetron sputtering was investigated. The coating consisted of multilayers of CrAlYN/CrN with a partially oxidised CrAlY(O)N/Cr(O)N oxy-nitride surface layer. The multilayer period of both the nitride and oxy-nitride layers was 3.8 ± 0.2 nm. Nano-scale chemical analysis and imaging was performed using sub-nanometer resolution electron energy loss spectroscopic profiling in a spherical aberration corrected scanning transmission electron microscope. Experimentally determined fine edge structure in electron energy loss spectra were in good agreement with theoretically determined spectra, calculated using electron density functional theory. This analysis indicated the CrN layers to be near stoichiometric with a relative Cr/N ratio of 1.05 ± 0.1 while for the CrAlYN layers the best match between the direct chemical analysis and the simulated edges was (Cr0.5Al0.5)N. A diffuse interface, ∼ 1 nm wide was observed between the CrAlYN and CrN layers. For the outermost oxy-nitride layer, the chromium to nitrogen ratio remains approximately constant though out the layer, while the aluminium decreases as a function of increasing oxygen content.  相似文献   

14.
The aim of this work is to analyze thermal fatigue in hard coatings/substrate composites (i) during slow heating and cooling and (ii) after local cyclic thermal laser pulse experiments. As a model system, CrN coatings with a thickness of 3 µm deposited on steel, hard metal and Si(100) substrates using reactive magnetron sputtering at a temperature of 350 °C are used. The coatings are at first characterized by means of in-situ high-temperature X-ray diffraction (XRD) using a commercially available temperature attachment and by applying heating and cooling rates of less than 0.3 °C/s. The treatment results in the expected reduction of intrinsic stresses which are independent of substrate material but strongly influenced by substrate roughness. To simulate local thermal fatigue, selected coating/substrate composites are thermally cycled using a laser beam of 6 mm in diameter in a temperature range of 50-850 °C applying up to 104 cycles and using heating and cooling rates of about 103 °C/s. Subsequently, laser cycled samples are analyzed using synchrotron XRD, scanning electron microscopy and focused ion beam technique. Laser pulses cause a reduction of compressive stresses in the coatings and a development of tensile stresses in the substrates accompanied by formation of cracks and ripples. The results show that the changes of the local macro- and micro-strains/stresses in the coatings and in the underlying substrates are strongly interlinked. The stress relaxation in the coatings is caused by recovery effects, by micro-cracks formed in the tensely-stressed coating and by plastic deformation of the metallic substrates.  相似文献   

15.
Thin HfO2 films were grown as high-k dielectrics for Metal-Insulator-Metal applications by Atomic Vapor Deposition on 8 inch TiN/Si substrates using pure tetrakis(ethylmethylamido)hafnium precursor. Influence of deposition temperature (320-400 °C) and process pressure (2-10 mbar) on the structural and electrical properties of HfO2 was investigated. X-ray diffraction analysis showed that HfO2 layers, grown at 320 °C were amorphous, while at 400 °C the films crystallized in cubic phase. Electrical properties, such as capacitance density, capacitance-voltage linearity, dielectric constant, leakage current density and breakdown voltage are also affected by the deposition temperature. Finally, TiN/HfO2/TiN stacks, integrated in the Back-End-of-Line process, possess 3 times higher capacitance density compared to standard TiN/Si3N4/TiN capacitors. Good step coverage (> 90%) is achieved on structured wafers with aspect ratio of 2 when HfO2 layers are deposited at 320 °C and 4 mbar.  相似文献   

16.
Three-dimensional (3D) silicon carbide (SiC) matrix composites reinforced with KD-I SiC fibres were fabricated by precursor impregnation and pyrolysis (PIP) process. The fibre-matrix interfaces were tailored by pre-coating the as-received KD-I SiC fibres with PyC layers of different thicknesses or a layer of SiC. Interfacial characteristics and their effects on the composite mechanical properties were evaluated. The results indicate that the composite reinforced with as-received fibre possessed an interfacial shear strength of 72.1 MPa while the composite reinforced with SiC layer coated fibres had a much higher interfacial shear strength of 135.2 MPa. However, both composites showed inferior flexural strength and fracture toughness. With optimised PyC coating thickness, the interface coating led to much improved mechanical properties, i.e. a flexural strength of 420.6 MPa was achieved when the interlayer thickness is 0.1 μm, and a fracture toughness of 23.1 MPa m1/2 was obtained for the interlayer thickness of 0.53 μm. In addition, the composites prepared by the PIP process exhibited superior mechanical properties over the composites prepared by the chemical vapour infiltration and vapour silicon infiltration (CVI-VSI) process.  相似文献   

17.
Tungsten (W) coating layers were successfully deposited using a vacuum plasma spraying (VPS) technique on a molybdenum (Mo) substrate. Tungsten powder with a median size of 10 μm was applied to prepare coatings via a plasma spray system. For the VPS process, argon and hydrogen were used as plasma-forming gases, and the coatings were deposited in 35 mbar vacuum pressure. A coating with a thickness of 300 μm was obtained, and some unmelted W powders were observed in the coating layer. This heat exposure experiment was performed in a sapphire crystal growing furnace at 2100 °C up to 110 h. After heat exposure, the VPS-W coating layers were soundly bonded with the Mo substrate due to the interdiffusion between W and Mo.  相似文献   

18.
H. Akazawa  M. Shimada 《Vacuum》2006,80(7):704-707
We investigated the orientation of domains in LiNbO3 (LN) thin films grown by electron-cyclotron resonance plasma sputtering on TiN films with various crystalline states. Deposition at 400 °C on an amorphous TiN produced partially crystallized and apparently c-axis-oriented LN. When TiN crystallized at 460 °C to become polycrystalline grains, the roughened surface randomized the orientation of LN. At 600 °C, the reaction of TiN with oxygen atoms supplied from the plasma created a TiOx layer. Rapid thermal annealing of amorphous LN films at 460 °C was the best solution for removing these disorientation factors, but annealing of amorphous LN on poly-crystalline TiN yielded no c-axis-oriented domains.  相似文献   

19.
Traditional methods to protect copper coating still exists with some shortages such as environmental pollution and high cost caused by multi-step processes. In this letter, Cu/liquid microcapsule composite coating was prepared by electroplating method. The corrosion resistance of the composite was investigated by means of electrochemical technique. The result of the XPS analysis proved that a thin hydrophobic film could form on the composite surface because of the slow release of microcapsules. This film improved greatly the corrosion resistance of composite coating. Especially, the corrosion inhibition efficiency reached up to 97.6% compared with that of the copper coating when the composite was stored in air for 30 days (d) at 25 °C.  相似文献   

20.
Hysteresis-free hafnium oxide films were fabricated by atomic layer deposition at 90 °C without any post-deposition annealing, and their structures and properties were compared with films deposited at 150 °C and 250 °C. The refractivity, bandgap, dielectric constant and leakage current density all increase with deposition temperature, while the growth rate and breakdown field decrease. All films are amorphous with roughly the same composition. Although the thin films deposited at the above-mentioned temperatures all show negligible hysteresis, only the 90 °C-deposited films remain hysteresis-free when the film thickness increases. The 90 °C-deposited films remain hysteresis-free after annealing at 300 °C. The hysteresis in films deposited at high temperatures increases with deposition temperature. Evidences show such hysteresis originates in the HfO2 film instead of the interface. Based on a careful structure analysis, middle-range order is suggested to influence the trap density in the films. HfO2 films deposited at low temperature with negligible hysteresis and excellent electrical properties have great potential for the fabrication and integration of devices based on non-silicon channel materials and in applications as tunneling and blocking layers in memory devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号