首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
K. Chu  Y.H. Lu  Y.G. Shen 《Thin solid films》2008,516(16):5313-5317
Nano-multilayers represent a new class of engineering materials that are made up of alternating nanometer scale layers of two different components. In the present work a titanium (Ti) monolayer was combined with titanium diboride (TiB2) to form a Ti/TiB2 nano-multilayer. Designed experimental parameters enabled an evaluation of the effects of direct current bias voltage (Ub) and bilayer thickness (Λ) during multilayer deposition on the mechanical properties of reactively sputtered Ti/TiB2 multilayer films. Their nanostructures and mechanical properties were characterized and analyzed using X-ray photoelectron spectroscopy (XPS), low-angle and high-angle X-ray diffraction (XRD), plan-view and cross-sectional high-resolution transmission electron microscopy (HRTEM), and microindentation measurements. Under the optimal bias voltage of Ub = − 60 V, it was found that Λ (varied from 1.1 to 9.8 nm) was the most important factor which dominated the nanostructure and hardness. The hardness values obtained varied from 12 GPa for Ti and 15 GPa for TiB2 monolayers, up to 33 GPa for the hardest Ti/TiB2 multilayer at Λ = 1.9 nm. The observed hardness enhancement correlated to the layer thickness, followed a relation similar to the Hall-Petch strengthening dependence, with a generalized power of ∼ 0.6. In addition, the structural barriers between two materials (hcp Ti/amorphous TiB2) and stress relaxation at interfaces within multilayer films resulted in a reduction of crack propagation and high-hardness.  相似文献   

2.
Five nanostructured Cr2N/Cu multilayer coatings were deposited by a bipolar asymmetric reactive pulsed DC magnetron sputtering system, and various bilayer periods (Λ) were achieved by controlling the holding time of Si substrates in the plasma of Cr or Cu. The hardness and elastic modulus of multilayer coatings were investigated by means of a nanoindenter. Nano-scratch and nano machining experiments on multilayered coatings were conducted using atomic force microscopy (AFM) in air and DI-water, respectively. According to the groove depth, width, and coefficient of friction (COF) obtained from nano-scratch tests, influences of scratch cycle numbers and bilayer periods on the scratchability of Cr2N/Cu multilayered thin films were examined. It was observed that after nano-scratch experiments in air and water, the COF values and the amount of removed material increased with increasing bilayer period. After nano-machining tests in air and water, different types of the cutting chip pile-ups were observed. In this work, the surface tribological properties and machinability of Cr2N/Cu multilayered thin films when using an AFM are discussed.  相似文献   

3.
The TiSiN/Ag multilayer coatings with bilayer periods of ~50, 65, 80, 115, 150, and 410 nm have been deposited on Ti6Al4 V alloy by arc ion plating. In order to improve the adhesion of the TiSiN/Ag multilayer coatings, TiN buffer layer was first deposited on titanium alloy. The multi-interfacial TiSiN/Ag layers possess alternating TiSiN and Ag layers. The TiSiN layers display a typical nanocrystalline/amorphous microstructure, with nanocrystalline TiN and amorphous Si3N4. TiN nanocrystallites embed in amorphous Si3N4 matrix exhibiting a fine-grained crystalline structure. The Ag layers exhibit ductile nanocrystalline metallic silver. The coatings appear to be a strong TiN (200)-preferred orientation for fiber texture growth. Moreover, the grain size of TiN decreases with the decrease of the bilayer periods. Evidence concluded from transmission electron microscopy revealed that multi-interfacial structures effectively limit continuous growth of single (200)-preferred orientation coarse columnar TiN crystals. The hardness of the coatings increases with the decreasing bilayer periods. Multi-interface can act as a lubricant, effectively hinder the cracks propagation and prevent aggressive seawater from permeating to substrate through the micro-pores to some extent, reducing the friction coefficient and wear rates. It was found that the TiSiN/Ag multilayer coating with a bilayer period of 50 nm shows an excellent wear resistance due to the fine grain size, high hardness, and silver-lubricated transfer films formed during wear tests.  相似文献   

4.
TiN/CNx multilayer films with bilayer periods of 4.5-40.3 nm were deposited by direct-current magnetron sputtering. Layer morphology and structure of the multilayered films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The TiN/CNx multilayers exhibited coherent epitaxial growth due to the mutual growth-promoting effect at small bilayer period and some crystalline regions going through the interface of TiN/CNx. Nanoindentation tests showed that the hardness of the multilayers varied from 12.5 to 31 GPa, with the highest hardness being obtained with a bilayer period of 4.5 nm. The tribological properties of the films were investigated using a ball-on-disk tribometer in humid air, and the TiN/CNx multilayer with a bilayer period of 4.5 nm also exhibited the lowest friction coefficient and the highest wear resistance.  相似文献   

5.
Nine kinds of nanostructured Cr2N/Cu multilayer thin films were deposited by the bipolar asymmetry reactive pulsed DC magnetron sputtering system. The antibacterial tests of coatings with various bilayer periods (Λ) and different Cr2N/Cu thickness ratios were performed to evaluate the bactericidal ability by E. coli, S. aureus and P. aeruginosa, respectively. The Λ value, thickness values of Cr2N to Cu layers significantly affected the bactericidal rates. The 100% bactericidal rates were achieved when the Λ value reached 20 nm. For the same Λ = 12 nm Cr2N/Cu multilayered coatings, the thickness ratio of Cr2N to Cu also showed strong influence on the bactericidal rates.  相似文献   

6.
Enhancement of mechanical and tribological properties on AISI D3 steel surfaces coated with CrN/AlN multilayer systems deposited in various bilayer periods (Λ) via magnetron sputtering has been studied in this work exhaustively. The coatings were characterized in terms of structural, chemical, morphological, mechanical and tribological properties by X-ray diffraction (XRD), electron dispersive spectrograph, atomic force microscopy, scanning and transmission electron microscopy, nanoindentation, pin-on-disc and scratch tests. The failure mode mechanisms were observed via optical microscopy. Results from X-ray diffraction analysis revealed that the crystal structure of CrN/AlN multilayer coatings has a NaCl-type lattice structure and hexagonal structure (wurtzite-type) for CrN and AlN, respectively, i.e., made was non-isostructural multilayers. An enhancement of both hardness and elastic modulus up to 28 GPa and 280 GPa, respectively, was observed as the bilayer periods (Λ) in the coatings were decreased. The sample with a bilayer period (Λ) of 60 nm and bilayer number n  =  50 showed the lowest friction coefficient (∼0.18) and the highest critical load (43 N), corresponding to 2.2 and 1.6 times better than those values for the coating deposited with n = 1, respectively. The best behavior was obtained when the bilayer period (Λ) is 60 nm (n = 50), giving the highest hardness 28 GPa and elastic modulus of 280 GPa, the lowest friction coefficient (∼0.18) and the highest critical load of 43 N. These results indicate an enhancement of mechanical, tribological and adhesion properties, comparing to the CrN/AlN multilayer systems with 1 bilayer at 28%, 21%, 40%, and 30%, respectively. This enhancement in hardness and toughness for multilayer coatings could be attributed to the different mechanisms for layer formation with nanometric thickness such as the Hall–Petch effect and the number of interfaces that act as obstacles for the crack deflection and dissipation of crack energy.  相似文献   

7.
The aim of this work is to characterize the electrochemical behavior of [TiN/TiAlN]n multilayer coatings under corrosion-erosion condition. The multilayers with bilayer numbers (n) of 2, 6, 12, and 24 and/or bilayer period (Λ) of 1500 nm, 500 nm, 250 nm, 150 nm and 125 nm were deposited by magnetron sputtering technique on Si (100) and AISI 1045 steel substrates. Both, the TiN and the TiAlN structures for multilayer coatings were evaluated via X-ray diffraction analysis. Mechanical and tribological properties were evaluated via nanoindentation measurements and scratch test respectively. Silica particles were used as abrasive material on corrosion-erosion test in 0.5 M of H2SO4 solution at impact angles of 30° and 90° over surface. The electrochemical characterization was carried out using polarization resistance technique (Tafel), in order to observe changes in corrosion rate as a function of the bilayer number (n) or the bilayer period (Λ) and the impact angle. Corrosion rate values of 9115 μm y for uncoated steel substrate and 2615 μm y for substrate coated with n = 24 (Λ = 125 nm) under an impact angle of 30° were found. On the other hand, for an impact angle of 90° the corrosion rate exhibited 16401 μm y for uncoated steel substrate and 5331 μm y for substrate coated with n = 24 (Λ = 125 nm). This behavior was correlated with the curves of mass loss for both coated samples and the surface damage was analyzed via scanning electron microscopy images for the two different impact angles. These results indicate that TiN/TiAlN multilayer coatings deposited on AISI 1045 steel represent a practical solution for applications in corrosive-erosive environments.  相似文献   

8.
《Thin solid films》2006,494(1-2):173-178
Polycrystalline CrN/AlN multilayer coatings were deposited by RF magnetron sputtering on silicon (001) substrates. The bilayer periods of CrN/AlN were controlled from 4 nm to 20 nm by the use of shutters, which were adjusted by a programmable logic control (PLC). To evaluate the thermal stability, the films were annealed at 500 °C, 600 °C, 700 °C, 800 °C, and 850 °C, for 1 h in both vacuum and air environments. The phase transformation during thermal evolution was studied by X-ray diffraction (XRD). The microstructure of CrN/AlN multilayer coatings as-deposited and after annealing was observed by transmission electron microscopy (TEM). The hardness of as-deposited CrN/AlN coating with a period of 4 nm was 28.2 GPa, which was 60% higher than that predicted by the rule of mixtures. The hardness of CrN/AlN multilayer coatings annealed at 850 °C in vacuum remained similar to the as-deposited state, and the nano-layered structure still persisted. The thermal stability of CrN/AlN coatings was better than that of CrN coating. The hardness degradation ratio of CrN/AlN coating with modulation period of 4 nm was only 8.1% at 700 °C, which was superior to that of a simple CrN coating.  相似文献   

9.
Multilayer Cr(1 − x)AlxN films with a total thickness of 2 μm were deposited on high-speed steel by medium frequency magnetron sputtering from Cr and Al-Cr (70 at.% Al) targets. The samples were annealed in air at 400 °C, 600 °C, 800 °C and 1000 °C for 1 hour. Films were characterized by cross-sectional scanning electron microscopy and X-ray diffraction analysis. The grain size of the as-deposited multilayer films is about 10 nm, increasing with the annealing temperature up to 100 nm. Interfacial reactions have clearly changed at elevated annealing temperatures. As-deposited films' hardness measured by nanoindentation is 22.6 GPa, which increases to 26.7 GPa when the annealing temperature goes up to 400 and 600 °C, but hardness decreases to 21.2 GPa with further annealing temperature increase from 600 to 1000 °C. The multilayer film adhesion was measured by means of the scratch test combined with acoustic emission for detecting the fracture load. The critical normal load decreased from 49.7 N for the as-deposited films to 21.2 N for the films annealed at 1000 °C.  相似文献   

10.
This work presents the research results on the structure and mechanical properties of coatings deposited by PVD methods on the X40CrMoV5-1 hot work tool steel substrates. The tests were carried out on CrAlSiN, CrAlSiN+DLC, CrN and WC/a-C:H coatings. It was found that tested coatings have nanostructural character with fine crystallites, while their average size fitted within the range 3-13 nm, depending on the coating type. The coatings demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate, the latter not only being the effect of interatomic and intermolecular interactions, but also by the transition zone between the coating and the substrate, developed as a result of diffusion that caused mixing of the elements in the interface zone and the compression stresses values. The critical load LC2 lies within the range 45-55 N, depending on the coating type. The coatings demonstrate a high hardness (4000 HV).  相似文献   

11.
Ni48Fe12Cr40(7 nm)/Ni80Fe20(40 nm) bilayer films and Ni80Fe20(40 nm) monolayer films were deposited at ambient temperature on Si(1 0 0)/SiO2 substrates by electron beam evaporation. The effect of annealing on the structure, composition, magnetization and magnetoresistance of the Ni48Fe12Cr40/Ni80Fe20 bilayer films was investigated. The structure of the Ni48Fe12Cr40/Ni80Fe20 bilayer films remains stable for annealing temperature up to 280 °C. For the as-deposited bilayer film the introducing of the Ni48Fe12Cr40 underlayer promotes both the [1 1 1] texture and grain growth in the Ni80Fe20 layer. The annealing promotes the grain growth of the Ni48Fe12Cr40/Ni80Fe20 bilayer films when the annealing temperature exceeds 280 °C. After annealing at a temperature over 280 °C, Cr atoms inside the Ni48Fe12Cr40 layer diffuse into the Ni80Fe20 layer and segregate on the surface of the Ni80Fe20 layer. The Ni48Fe12Cr40 underlayer as a seed layer can enhance the anisotropic magnetoresistance ratio of the Ni80Fe20 layer at a annealing temperature up to 280 °C compared with Ni80Fe20 monolayer film. After annealing at a temperature over 280 °C, however, the anisotropic magnetoresistance ratio of the Ni80Fe20 monolayer films exceeds that of the Ni48Fe12Cr40/Ni80Fe20 bilayer films. For all annealing temperatures, the coercivities of the Ni48Fe12Cr40/Ni80Fe20 bilayer films are smaller than those of the Ni80Fe20 monolayer films.  相似文献   

12.
CrN/AlN superlattice coatings with different CrN layer thicknesses were prepared using a pulsed closed field unbalanced magnetron sputtering system. A decrease in the bilayer period from 12.4 to 3.0 nm and simultaneously an increase in the Al/(Cr + Al) ratio from 19.1 to 68.7 at.% were obtained in the CrN/AlN coatings when the Cr target power was decreased from 1200 to 200 W. The bilayer period and the structure of the coatings were characterized by means of low angle and high angle X-ray diffraction and transmission electron microscopy. The mechanical and tribological properties of the coatings were studied using the nanoindentation and ball-on-disc wear tests. It was found that CrN/AlN superlattice coatings synthesized in the current study exhibited a single phase face-centered cubic structure with well defined interfaces between CrN and AlN nanolayers. Decreases in the residual stress and the lattice parameter were identified with a decrease in the CrN layer thickness. The hardness of the coatings increased with a decrease in the bilayer period and the CrN layer thickness, and reached the highest value of 42 GPa at a bilayer period of 4.1 nm (CrN layer thickness of 1.5 nm, AlN layer thickness of 2.5 nm) and an Al/(Cr + Al) ratio of 59.3 at.% in the coatings. A low coefficient of friction of 0.35 and correspondingly low wear rate of 7 × 10− 7 mm3N− 1m− 1 were also identified in this optimized CrN/AlN coating when sliding against a WC-6%Co ball.  相似文献   

13.
BaTiO3 films were epitaxially grown on SrTiO3 (001) substrates buffered with SrRuO3 films as bottom electrode by pulsed laser deposition under high oxygen pressure of 30 Pa. The quality of the BaTiO3/SrRuO3/SrTiO3 multilayer films was analyzed by means of X-ray diffraction, atomic force microscopy and transmission electron microscopy. BaTiO3 films were found to be highly c-axis-oriented tetragonal phase with c/a = 1.002. The dielectric constant first increased with increasing temperature, and showed a peak at the Curie temperature of about 356 K. The films had well-saturated hysteresis loops with a remnant polarization of 7.3 μC/cm2 and a coercive field of 29.5 kV/cm at room temperature.  相似文献   

14.
AlxTi1-xN/CrN multilayer coatings were fabricated by magnetron sputtering and those hardness variations were studied by observing the crack propagation and measuring the chemical bonding state of nitrides by Ti addition. While AlN/CrN multilayer shown stair-like crack propagation, AlxTi1-xN/CrN multilayer illustrated straight crack propagation. Most interestingly, Ti addition induced more broken nitrogen bonds in the nitride multilayers, leading to the reduction of hardness. However, the hardness of Al0.25Ti0.75N/CrN multilayer, having high Ti contents, increased by the formation of many Ti-N bond again instead of Al-N bond. From these results, we found that linear crack propagation behavior was dominated by broken nitrogen bonds in the AlxTi1-xN/CrN multilayer coatings.  相似文献   

15.
In the last decade, considerable research effort was directed to the deposition of multilayer films with layer thicknesses in the nanometer range (superlattice coatings), in order to increase the performance of various cutting tools and machine parts. The goal of the present work was to investigate the main microstructural, mechanical and wear resistance characteristics of a superlattice coating, consisting of alternate multilayer ZrN/TiAIN films, with various bilayer periods (5 / 20 nm). The coatings were deposited by the cathodic arc method on Si, plain carbon steel and high speed steel substrates to be used as wear resistance surfaces. The multilayer structures were prepared by using shutters placed in front of each cathode (Zr and Ti+Al). The characteristics of multilayer structures (elemental and phase composition, texture, Vickers microhardness, thickness, adhesion, and wear resistance) were determined by using various techniques (AES, XPS, XRD, microhardness measurements, scratch, and tribological tests). A comparison with the properties of ZrN and TiAIN single-layer coatings was carried out.  相似文献   

16.
This paper discusses the friction and wear properties of Cr:(Wx,N0.1) coatings with different tungsten contents. The Cr:(Wx,N0.1) coatings with x being in the range of 0-0.16 were deposited using unbalanced magnetron sputtering technology. The microstructures and mechanical properties of Cr:(Wx,N0.1) coatings have been characterized by SEM, TEM, X-ray diffraction (XRD), nanoindentation and adhesion techniques. The tribological properties of the coatings were investigated using an oscillating friction and wear tester under dry conditions. Indexable inserts with Cr:(Wx,N0.1) coatings were applied to turning AISI 1045 steel material by a lathe. Micron-drills with Cr:(Wx,N0.1) coatings were adopted in the ultra high speed (105 rpm) PCB through-hole drilling test. Experimental results indicate that the coating microstructure, mechanical properties and wear resistance vary according to the tungsten content. All the coatings crystallize in the BCC phase. Cr:(W0.06,N0.1)-coated tools showed the best wear resistance in 1045 steel turning and PCB through-hole drilling tests. The service life of Cr:(W0.06,N0.1)-coated tool is three times greater than that of an uncoated tool in PCB through-hole drilling test.  相似文献   

17.
18.
Ni-Co/Al2O3 composite coatings were obtained by pulse reversal electrodeposit (PRC) and direct current electrodeposit (DC). The microstructure of the coatings was characterized by means of SEM, XRD and TEM. Hardness, wear resistance and macro residual stress of coatings were also investigated. The results showed that the microstructure and performance of the coatings were significantly affected by the electrodeposit methods and the Al2O3 particles content. The PRC composite coatings exhibited compact surface, high hardness and excellent wear resistance. The macro residual stress of PRC composite coatings was lower than that of DC ones. With the increasing of Al2O3 particles content, the hardness and wear resistance of the composite coatings increased.  相似文献   

19.
The effects of Ti/TiN bi- and multilayered films on the fatigue performance of the Ti46Al8Nb alloy were investigated. Ti/TiN films with a total thickness of 1 μm were deposited on the Ti46Al8Nb alloy substrate by the hollow cathode deposition method. The samples were examined with various analytical techniques including nanoindentation, scratch test, stripping layer substrate curvature test and scanning electron microscopy. The results show that multilayered Ti/TiN films can enhance the fatigue strength of the Ti46Al8Nb alloy, whereas bilayered films have no obvious effect. Compared with the bilayer, the multilayer exhibits higher hardness, higher residual compressive stress and higher adhesion strength to the substrate. It is also demonstrated that the multilayer is responsible for retarding fatigue crack growth. All the superior properties make the hard Ti/TiN multilayer to be an effective protection coating for the enhanced fatigue strength of the brittle substrate.  相似文献   

20.
AIN/CrN multilayer hard coatings with various bilayer thicknesses were fabricated by a reactive sputtering process. The microstructural and mechanical characterizations of multilayer coatings were investigated through transmission electron microscope (TEM) observations and the hardness measurements by nano indentation. In particular, the variation of chemical bonding states of the bilayer nitrides was elucidated by near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Many broken nitrogen bonds were formed by decreasing the bilayer thickness of AIN/CrN multilayer coatings. Existence of optimum AIN/CrN multilayer coatings thickness for maximum hardness could be explained by the competition of softening by the formation of broken nitrogen bonds and strengthening induced by decreasing bilayer thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号