首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently it has been discovered that a nano-porous main group oxide 12CaO·7Al2O3 (C12A7) can be converted from a wide-gap insulator to a good transparent conductor. Using ab initio modelling we explain good conductivity of this material by very small barriers for hopping of localised electrons between neighbouring positive cages. We show that optical absorption of C12A7 in infrared region and at energies higher than 2.7 eV is due to inter-cage and intra-cage electron transitions, respectively. The proposed mechanisms can be useful in further search for conducting transparent media.  相似文献   

2.
(La0.05Bi0.95)2Ti2O7 (LBTO) thin films had been successfully prepared on P-type Si substrate by chemical solution deposition method. The structural properties of the films were studied by X-ray diffraction. The phase of (La0.05Bi0.95)2Ti2O7 is more stable than the phase of Bi2Ti2O7 without La substitution. The films exhibited good insulating properties with room temperature resistivities in the range of 1012-1013 Ω cm. The dielectric constant of the film annealed at 550 °C at 100 kHz was 157 and the dissipation factor was 0.076. The LBTO thin films can be used as storage capacitors in DRAM.  相似文献   

3.
Liuyi Huang 《Materials Letters》2010,64(23):2612-2615
Nanocrystalline pyrite (FeS2) films were achieved by the sol-gel dip-coating process and sulfurization treatment. The microstructural, optical and electrical characteristics were investigated and the effect of sulfurization time on film properties was discussed. The XRD spectra show that FeS2 film can be obtained for 1 h sulfurization and no other phase appears. The morphology of the precursor Fe2O3 films shows a porous and loose structure. However, with the sulfurization time increasing, the precursor films completely transformed into the pyrite films which have a compact and smooth structure. The pyrite films with a different sulfurization time have the optical absorption edges changed in the range of 0.90-0.99 eV. With the increase of sulfurization time, the carrier concentration increases and the carrier mobility decreases. It is speculated that crystallographic defects in the films could play an important role in film properties.  相似文献   

4.
Aluminium oxide being environmentally stable and having high transmittance is an interesting material for optoelectronics devices. Aluminium oxide thin films have been successfully deposited by hot water oxidation of vacuum evaporated aluminium thin films. The surface morphology, surface roughness, optical transmission, band gap, refractive index and intrinsic stress of Al2O3 thin films were studied. The cost effective vapor chopping technique was used. It was observed that, optical transmittance of vapor chopped Al2O3 thin film showed higher transmittance than the nonchopped film. The optical band gap of vapor chopped thin film was higher than the nonchopped Al2O3, whereas surface roughness and refractive index were lower due to vapor chopping.  相似文献   

5.
Bi3.25La0.75Ti3O12(BiLT) thin films with different thickness were successfully deposited onto fused quartz by chemical solution deposition. X-ray diffraction analysis shows that BiLT thin films are polycrystalline with (0 0 2)-preferred orientation. The dispersion of refractive indices of the BiLT thin films was investigated by the optical transmittance spectrum. The optical band gap energy was estimated from the graph of (hνα)2 versus . The results show that the refractive index and band-gap energy of the BiLT thin films decrease with the films thickness.  相似文献   

6.
Gd2Ti2O7: Eu3+ thin film phosphors were fabricated by a sol-gel process. X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 800 °C and the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free phosphor films were obtained, which mainly consisted of grains with an average size of 70 nm. The doped Eu3+ showed orange-red emission in crystalline Gd2Ti2O7 phosphor films due to an energy transfer from Gd2Ti2O7 host to them. Both the lifetimes and PL intensity of the Eu3+ increased with increasing the annealing temperature from 800 to 1000 °C, and the optimum concentrations for Eu3+ were determined to be 9 at.%. of Gd3+ in Gd2Ti2O7 film host.  相似文献   

7.
P.H. Tai  C.H. Jung  Y.K. Kang  D.H. Yoon   《Thin solid films》2009,517(23):129-6297
12CaO·7Al2O3 electride (C12A7:e) doped indium tin oxide (ITO) (ITO:C12A7:e) thin films were fabricated on a glass substrate by an RF magnetron co-sputtering system with increasing number of C12A7:e chips (from 1 to 7) and at various oxygen partial pressure ratios. The optical transmittance of the ITO:C12A7:e thin film was higher than 70% in the visible wavelength region. In the electrical properties of the thin film, a decrease of the carrier concentration from 2.6 × 1020 cm− 3 to 2.1 × 1018 cm− 3 and increase of the resistivity from 1.4 × 10− 3 Ω cm to 4.1 × 10− 1 Ω cm were observed with increasing number of C12A7:e chips and oxygen partial pressure ratios. It was also observed that the Hall mobility was decreased from 17.27 cm2·V− 1·s− 1 to 5.13 cm2·V− 1·s− 1. The work function of the ITO thin film was reduced by doping it with C12A7:e.  相似文献   

8.
Ba0.5Sr0.5TiO3(BST)/Bi1.5Zn1.0Nb1.5O7(BZN) multilayer thin films were prepared on Pt/Ti/SiO2/Si substrates by a sol-gel method. The structures and morphologies of BST/BZN multilayer thin films were analyzed by X-ray diffraction (XRD) and field-emission scanning electron microscope. The XRD results showed that the perovskite BST and the cubic pyrochlore BZN phases can be observed in the multilayer thin films annealed at 700 °C and 750 °C. The surface of the multilayer thin films annealed at 750 °C was smooth and crack-free. The BST/BZN multilayer thin films annealed at 750 °C exhibited a medium dielectric constant of around 147, a low loss tangent of 0.0034, and a relative tunability of 12% measured with dc bias field of 580 kV/cm at 10 kHz.  相似文献   

9.
Thin films composed of a matrix of titanium and nickel oxides, doped with gold nanoparticles have been prepared with the sol-gel method and annealed at different time/temperature combinations. Structural characterizations demonstrate the crystallization of nickel titanate and of TiO2-rutile due to nickel capability to promote rutile crystallization over anatase. Optical characterizations show a tunable refractive index of the samples according to the Ti/Ni ratio, and a high amount of residual porosity even after high temperature annealing. Sensor functionality measurements were performed with H2, CO and H2S: high sensitivity for hydrogen sulfide detection has been proved, and the cross sensitivity to the other two gases can be tuned by controlling the nickel amount. For high Ni concentrations, the matrix is composed of NiTiO3 and TiO2-rutile, and no cross sensitivity is experienced. For lower Ni amounts, TiO2-anatase starts to crystallize and the films become sensitive to H2 and CO.  相似文献   

10.
Thin films of nanocrystalline SnS2 on glass substrates were prepared from solution by dip coating and then sulfurized in H2S (H2S:Ar = 1:10) atmosphere. The films had an average thickness of 60 nm and were characterized by X-ray diffraction studies, scanning electron microscopy, EDAX, transmission electron microscopy, UV-vis spectroscopy, and Raman spectroscopy. The influence of annealing temperature (150-300 °C) on the crystallinity and particle size was studied. The effect of CTAB as a capping agent has been tested. X-ray diffraction analysis revealed the polycrystalline nature of the films with a preferential orientation along the c-axis. Optical transmission spectra indicated a marked blue shift of the absorption edge due to quantum confinement and optical band gap was found to vary from 3.5 to 3.0 eV with annealing temperature. Raman studies indicated a prominent broad peak at ∼314 cm−1, which confirmed the presence of nanocrystalline SnS2 phase.  相似文献   

11.
Er3+-doped Y2Ti2O7 and Er2Ti2O7 thin films were fabricated by sol-gel spin-coating method. A well-defined pyrochlore phase ErxY2-xTi2O7 was observed while the annealing temperature exceeded 800 °C. The average transmittance of the ErxY2-xTi2O7 thin films annealed at 400 to 900 °C reduces from ∼ 87 to ∼ 77%. The refractive indices and optical band gaps of ErxY2-xTi2O7 (x = 0-2) annealed at 800 °C/1 h vary from 2.20 to 2.09 and 4.11 to 4.07 eV, respectively. The ∼ 1.53 μm photoluminescence spectrum of Er3+ (5 mol%)-doped Y2Ti2O7 thin films annealed at 700 °C/1 h exhibits the maximum intensity and full-width at half maximum (∼ 60 nm).  相似文献   

12.
BST thin films have been investigated as potential candidates for use in frequency agile microwave circuit devices. Stoichiometric (Ba1 − xSrx)TiO3 (BST) thin films have been prepared on Pt/SiO2/Si substrates using sol-gel method. The BST films were characterized by X-ray fluorescence (XRF) spectroscopy analysis, X-ray diffraction (XRD), scanning electron microscope (SEM) and electrical measurements. The relationships of processing parameters, microstructures, and dielectric properties are discussed. The results show that the films exhibit pure perovskite phase through rapid thermal anneal at 700 °C and their grain sizes are about 20-40 nm. The dielectric constants of BST5, BST10, BST15 and BST20 are 323, 355, 382 and 405, respectively, at 80 kHz.  相似文献   

13.
A significant practical application for nanostructured materials is X-ray medical imagery, because it is necessary to use dense materials in order to enable absorption of high energy photons. An important requirement of these materials is UV-vis range emission produced by X-ray excitation, which can be influenced by the particle size. Europium doped gadolinium oxide is a well known red phosphor. Moreover, nanophosphors of Gd2O3 codoped with Tb3+, Eu3+ increase their light yield by energy transfer between Tb3+ and Eu3+. In this study, Gd2O3 nanopowders codoped with Eu3+ and Tb3+ (2.5 at.% Eu3+, and 0.005 and 0.01 at.% Tb3+) were obtained via a sol-gel process using gadolinium pentanedionate as precursor and europium and terbium nitrates as doping sources. In this paper, we report the influence of annealing temperature on the structure, morphology and luminescent properties of Gd2O3:Eu3+, Tb3+ by means of TGA, XRD, TEM and X-ray emission measurements.  相似文献   

14.
The structural properties of La2O3 and Al2O3-La2O3 binary oxides prepared by sol-gel were studied by XRD, HRTEM and UV-vis. The binary oxides with high lanthana contents show an amorphous structure after calcination at 650 °C. At calcination temperatures higher than 1000 °C there is a phase transformation from the amorphous state to the crystalline LaAlO3 with a perovskite structure. The structure of La2O3 is consistent with the hexagonal system; however, some crystalline microdomains with a monoclinic structure were detected by HRTEM. Islands of La2O3 and LaAl11O18 phases were detected at high lanthana concentration in the binary oxide. The modification in the coordination shell of the Al3+ cations due to the interaction with La3+ cations confirms the formation of phases with a perovskite structure and the presence of islands of the LaAl11O18 phase.  相似文献   

15.
Ferroelectric Ba(Sn0.15Ti0.85)O3 (BTS) thin films were deposited on LaNiO3-coated silicon substrates via a sol-gel process. Films showed a strong (1 0 0) preferred orientation depending upon annealing temperature and concentration of the precursor solution. The dependence of dielectric and ferroelectric properties on film orientation has been studied. The leakage current density of thin films at 100 kV/cm was 7 × 10−7 A/cm2 and 5 × 10−5 A/cm2 and their capacitor tunability was 54 and 25% at an applied field of 200 kV/cm (measurement frequency of 1 MHz) for the thin films deposited with 0.1 and 0.4 M spin-on solution, respectively. This work clearly reveals the highly promising potential of BTS compared with BST films for application in tunable microwave devices.  相似文献   

16.
Crack-free Bi2Ti2O7 thin films on silicon substrates were prepared using chemical solution decomposition technique, and then treated by rapid thermal annealing. The microstructure of the films was studied by scanning electron microscopy. The effects of different fabricating procedures and various annealing temperatures and times on the leakage current density were investigated. The results show that the leakage current density decreases with increasing annealing temperature, while increases with increasing annealing time. Annealing temperature has a much stronger effect on the insulating properties of Bi2Ti2O7 thin films than that of annealing time.  相似文献   

17.
In this work, we present a sol-gel method for the preparation of zirconia films. Using zirconium n-propoxide as the starting precursor, a ZrO2 sol has been synthesized that remains stable for several months. Thin films were deposited using the dip-coating method. The structural characterization was performed using waveguide Raman spectroscopy. The films present an amorphous phase up to an annealing temperature of 400 °C. Both monoclinic and tetragonal phases were obtained for annealing temperatures higher than 450 °C. The proportions of these two phases were calculated from the Raman spectra and the size of the crystallites was evaluated using the low-wavenumber Raman band. The optical properties were characterized by the m-lines technique (n = 1.96) and UV-visible spectroscopy. The optical losses for a TE0 mode were measured to be 0.29 ± 0.03 dB cm− 1 for a sample annealed at 400 °C. To optimize the protocol for thermal annealing, a powder obtained from a dried sol was characterized by Thermal Gravimetric Analysis. Rutherford Back Scattering was employed to determine the chemical composition and the stoichiometry of the zirconia films.  相似文献   

18.
Alumina (Al2O3) thin films were sputter deposited over well-cleaned glass and Si < 100 > substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 °C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al2O3-Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance, AC conductivity and activation energy were determined and the results are discussed.  相似文献   

19.
Thin films of indium sulfide (In2S3) micro- and nanorods were successfully prepared by sulfurization of electrodeposited metal indium layers. The films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV-vis spectroscopy. From XRD and TEM observations it was concluded that the In2S3 nanorods and microrods have ∼50 nm and ∼0.5 μm diameter, respectively. A plausible top-growth mechanism was proposed for the formation of the nanorods in which the hydroxide layer was found to play an important role. The micro- and nanorods showed optical bandgap of ∼2.2 and ∼2.54 eV, respectively. This facile and cost effective method may be extended to fabricate other metal chalcogenide nanostructures on solid substrates.  相似文献   

20.
Reversible transformation of silver oxide and metallic nanoparticles inside a relatively porous silica film has been established. Annealing of Ag-doped films in oxidizing (air) atmosphere at 450 °C yielded colorless films containing AgOx. These films were turned yellow when heated in H2-N2 (reducing atmosphere) due to the formation of Ag nanoparticles. This yellow coloration (due to nano Ag0) and bleaching (conversion of Ag0 → Ag+) are reversible. Optical and photoluminescence spectra are well consistent with this coloration and bleaching. The soaking test of the air-annealed film in Na2S2O3 solution supports the presence of Ag+. Grazing incidence X-ray diffraction and transmission electron microscopy studies reveal the formation of Ag-oxides and Ag nanoparticles in the oxidized and reduced films, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号