首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
100 nm InN layer was grown on sapphire c-plane using a metal-organic chemical vapor deposition (MOCVD) system. Low temperature (LT) GaN layer was grown on InN layer to protect InN layer from direct exposure to hydrogen flow during high temperature (HT) GaN growth and/or abrupt decomposition. Subsequently, thick HT GaN layer (2.5 μm thick) was grown at 1000 °C on LT GaN/InN/sapphire template. Microstructure of epilayer-substrate interface was investigated by transmission electron microscopy (TEM). From the high angle annular dark field TEM image, the growth of columnar structured LT GaN and HT GaN with good crystallinity was observed. Though thickness of InN interlayer is assumed to be about 100 nm based on growth rate, it was not clearly shown in TEM image due to the InN decomposition. The lattice parameters of GaN layers were measured by XRD measurement, which shows that InN interlayer reduces the compressive strain in GaN layer. The relaxation of compressive strain in GaN layer was also confirmed by photoluminescence (PL) measurement. As shown in the PL spectra, red shift of GaN band edge peak was observed, which indicates the reduction of compressive strain in GaN epilayer.  相似文献   

2.
Thermal healing of the sub-surface damage layer in sapphire   总被引:1,自引:0,他引:1  
The sub-surface damage layer formed by mechanical polishing of sapphire is known to reduce the mechanical strength of the processed sapphire and to degrade the performance of sapphire based components. Thermal annealing is one of the methods to eliminate the sub-surface damage layer. This study focuses on the mechanism of thermal healing by studying its effect on surface topography of a- and c-plane surfaces, on the residual stresses in surface layers and on the thickness of the sub-surface damage layer. An atomically flat surface was developed on thermally annealed c-plane surfaces while a faceted roof-top topography was formed on a-plane surfaces. The annealing resulted in an improved crystallographic perfection close to the sample surface as was indicated by a noticeable decrease in X-ray rocking curve peak width. Etching experiments and surface roughness measurements using white light interferometry with sub-nanometer resolution on specimens annealed to different extents indicate that the sub-surface damage layer of the optically polished sapphire is less than 3 μm thick and it is totally healed after thermal treatment at 1450 °C for 72 h.  相似文献   

3.
ZnO films with and without a self-buffer layer were grown on c-plane sapphire substrates by atmospheric metal organic chemical vapor deposition. The influence of the buffer layer thickness, annealing temperature and annealing time on ZnO films has been investigated. The full width at half maximum of the ω-rocking curve of the optimized self-buffer layer sample is only 395 arc sec. Its surface is composed of regular columnar hexagons. After the buffer layer was introduced, the A1 longitudinal mode peak at 576 cm− 1, related to the defects, disappears in Raman spectra. For the photoluminescence, besides the strong donor binding exciton peak at 3.3564 eV, an ionized donor binding exciton and a free exciton peak is respectively observed at 3.3673 and 3.3756 eV at the high-energy side in the spectrum of the sample with the buffer layer.  相似文献   

4.
The influence of deposition conditions of nucleation GaN layer on the properties of high-temperature GaN layer, grown on sapphire substrates, was investigated. The hydride vapor phase epitaxy (HVPE) three-section horizontal hot-wall furnace technique was applied. Various temperatures, HCl flows and time intervals of nucleation layer growth were utilized. Based on previous studies the following experimental conditions were selected: temperature was kept at 450 or 570 °C, and HCl flows were 8 or 10 sccm/min. The duration of nucleation layer deposition was 5, 7 and 9 min. The scanning electron microscopy technique was applied for the investigation of nucleation layer morphology after migration. Thick GaN layers were deposited during the three-step growth process at 1060 °C. Samples with various surface morphologies were obtained. Photoluminescence spectra and X-ray measurements were performed, which permitted clarifications of the influence of growth conditions of the nucleation layer on the properties of high-temperature layers.  相似文献   

5.
Planar nonpolar (112?0) a-plane GaN films have been grown by metalorganic chemical-vapor deposition directly on cone-shaped patterned r-plane sapphire substrates (PRSS) fabricated by dry etching. High-resolution X-ray diffractometers 2θ-ω scan confirmed that the films grown on PRSS are solely a-plane oriented, and the full width at half maximum values (FWHM) of the X-ray rocking curves for (112?0) GaN along [0001]GaN and [11?00]GaN were found to be 684 and 828″, respectively. As compared to the film grown on conventional r-plane sapphire substrate which typically has (112?0) omega FWHM values of 900 and 2124″ along [0001]GaN and [11?00]GaN respectively, the film grown on PRSS exhibits overall reduced omega FWHM values, and much smaller anisotropy behavior of crystallinity with respect to the in-plane orientation. The surface morphology is also improved by utilizing the PRSS technique. Cross-sectional transmission electron microscopy analysis shows that the density of threading dislocations has been greatly reduced from ~ 1.0 × 1010 cm− 2 above the flat sapphire regions to ~ 1.0 × 107 cm− 2 above the protruding cone patterns. The improvement of crystal quality and the increase of light extraction efficiency by using cone-shaped PRSS technique lead to a strong enhancement in the light emission of a-plane GaN films. These results indicate that growth of a-plane GaN films on cone-shaped PRSS shows promise for use in high-quality and high-cost-performance nonpolar GaN based devices.  相似文献   

6.
We investigate optical, structural and electrical properties of undoped GaN grown on sapphire. The layers were prepared in a horizontal reactor by low pressure metal organic chemical vapor deposition at temperatures of 900 °C and 950 °C on a low temperature grown (520 °C) GaN buffer layer on (0001) sapphire substrate. The growth pressure was kept at 10,132 Pa. The photoluminescence study of such layers revealed a band-to-band emission around 366 nm and a yellow band around 550 nm. The yellow band intensity decreases with increasing deposition temperature. X-ray diffraction, atomic force microscopy and scanning electron microscopy studies show the formation of hexagonal GaN layers with a thickness of around 1 μm. The electrical study was performed using temperature dependent Hall measurements between 35 and 373 K. Two activation energies are obtained from the temperature dependent conductivity, one smaller than 1 meV and the other one around 20 meV. For the samples grown at 900 °C the mobilities are constant around 10 and 20 cm2 V−1 s− 1, while for the sample grown at 950 °C the mobility shows a thermally activated behavior with an activation energy of 2.15 meV.  相似文献   

7.
Aluminum nitride (AlN) single-crystalline layers were grown on c-plane sapphire substrates by radio-frequency magnetron sputter epitaxy using N2/Ar mixture ambient gas and 5-N grade Al target. The crystalline structures of the AlN layers depending on substrate temperature and N2 composition ratio in ambient gas, were predominantly studied. The crystalline quality of the AlN layer was improved by elevating substrate temperature, and the full-widths at half-maximum (FWHMs) of X-ray rocking curves (XRC) for both symmetric and asymmetric planes of AlN layers grown at N2 composition ratio of around 25%, became low. The FWHMs of XRC for (0002) diffraction of the AlN layers grown at 1080 °C, were less than 20 arcsec. The surface root-mean-square roughness of such highly c-axis oriented AlN layer was determined by atomic force microscopy, and was increased from 0.6 nm to 1.3 nm when AlN layer thickness was varied from 0.15 to 0.7 μm.  相似文献   

8.
GaN epilayers with porous SiNx interlayer and changed growth modes were grown by metal–organic chemical vapor deposition on c-plane sapphire substrates. Comparing with GaN epilayer grown by ordinary method, the crystalline qualities were significantly improved. The improvement was attributed to the reduction of the density of threading dislocations causing by over-growth process combining with delayed coalescence of individual GaN islands. The influence of the deposition and annealing of nucleation layer on the GaN regrowth was also discussed.  相似文献   

9.
The implementation of graphene layers in gallium nitride (GaN) heterostructure growth can solve self‐heating problems in nitride‐based high‐power electronic and light‐emitting optoelectronic devices. In the present study, high‐quality GaN layers are grown on patterned graphene layers and 6H–SiC by metalorganic chemical vapor deposition. A periodic pattern of graphene layers is fabricated on 6H–SiC by using polymethyl methacrylate deposition and electron beam lithography, followed by etching using an Ar/O2 gas atmosphere. Prior to GaN growth, an AlN buffer layer and an Al0.2Ga0.8N transition layer are deposited. The atomic structures of the interfaces between the 6H–SiC and graphene, as well as between the graphene and AlN, are studied using scanning transmission electron microscopy. Phase separation of the Al0.2Ga0.8N transition layer into an AlN and GaN superlattice is observed. Above the continuous graphene layers, polycrystalline defective GaN is rapidly overgrown by better quality single‐crystalline GaN from the etched regions. The lateral overgrowth of GaN results in the presence of a low density of dislocations (≈109 cm−2) and inversion domains and the formation of a smooth GaN surface.  相似文献   

10.
The electrical properties, deep-level spectra, microcathodoluminescence (MCL) spectra and diffusion lengths of minority charge carriers were measured in GaN films grown by the epitaxial lateral overgrowth (ELOG) technique. The results are compared to the properties of GaN layers grown in a standard fashion without masking of the initial template. MCL and electron beam induced current (EBIC) imaging of the laterally overgrown regions revealed the presence of dark spots with density of 1-5 × 106 cm− 2 that are associated with individual dislocations. The concentration of deep electron and hole traps was found to be much higher in the standard material than in the ELOG material. Diffusion lengths of minority carriers determined from EBIC signal profiling gave values of 0.8-1 μm along the bright regions and 0.4-0.5 μm in the dark regions of the ELOG samples. Similar measurements on metal organic chemical vapor deposition templates gave a diffusion length of 0.4-0.5 μm, close to the diffusion length in the dark stripes of the ELOG samples.  相似文献   

11.
Chiu CH  Lin CC  Han HV  Liu CY  Chen YH  Lan YP  Yu P  Kuo HC  Lu TC  Wang SC  Chang CY 《Nanotechnology》2012,23(4):045303
In this paper, the high performance GaN-based light-emitting diodes (LEDs) with embedded microscale air voids and an SiO(2) nanomask by metal-organic chemical vapor deposition (MOCVD) were demonstrated. Microscale air voids and an SiO(2) nanomask were clearly observed at the interface between GaN nanorods (NRs) and the overgrown GaN layer by scanning electron microscopy (SEM). From the reflectance spectra we show strong reflectance differences due to the different refractive index gradient between the GaN grown on the nanotemplate and sapphire. It can increase the light extraction efficiency due to additional light scattering. The transmission electron microscopy (TEM) images show the threading dislocations were suppressed by nanoscale epitaxial lateral overgrowth (NELOG). The LEDs with embedded microscale air voids and an SiO(2) nanomask exhibit smaller reverse-bias current and large enhancement of the light output (65% at 20 mA) compared with conventional LEDs.  相似文献   

12.
C. Guarneros 《Vacuum》2010,84(10):1187-1271
In this work, a gallium nitride (GaN) buffer layer was grown on a sapphire substrate (α-Al2O3) in a horizontal reactor by low pressure metal-organic chemical vapor deposition (LP-MOCVD). Trimethylgallium (TMGa) and ammonia (NH3) were precursors of gallium and nitrogen, respectively, and hydrogen (H2) was used as carrier gas. TMGa and NH3 fluxes were kept constant, with flow rates of 3.36 μmole/min and 0.05 standard liter/min, respectively. The fluence of hydrogen was also kept constant with the flux rate of 4.5 standard liter/min. GaN was deposited at 550 °C and 100 mbar. According to the X-ray diffraction spectra, a buffer layer was formed with a wurtzite structure, which is the stable phase. The thermodynamic affinities were estimated as A1 = 175.9 kJ/mole and A2 = 62.88 kJ/mole.  相似文献   

13.
We report the growth of nonpolar GaN epitaxial films on nearly lattice-matched LiGaO2 substrate by a chemical vapor deposition (CVD) method. The structural, morphological and optical properties of GaN films were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), atomic force microscopy, and photoluminescence (PL) measurements. We found that growth temperature plays an important role in the preparation of pure m-plane films by CVD method. Pure m-plane GaN was achieved by optimized growth condition. Epitaxial relationship was revealed by TEM study. The PL spectrum at room temperature has a strong near-band-edge emission at 3.41 eV and a weak yellow luminescence band.  相似文献   

14.
C.B. Soh  S.J. Chua  P. Chen  W. Liu 《Thin solid films》2007,515(10):4509-4513
Deep level transient spectroscopy has been used to characterize the deep levels in InGaN/GaN grown on sapphire substrate as well as on free-standing GaN. The deep levels at Ec − Et ∼ 0.17-0.23 eV and Ec − Et ∼ 0.58-0.62 eV have been detected in our samples which are present in GaN samples reported by others. These two deep levels have been attributed by us to threading dislocations as they exhibit logarithmic capture kinetic behavior and are found to be substantially reduced in its trap concentration (∼ from 1014 to 1012 cm− 2) in GaN grown on free-standing GaN template. Other than the two deep levels, an additional level at Ec − Et ∼ 0.40-0.42 eV has been identified in both samples, which is believed to be related to In segregation. AFM image shows region of pits formation in InGaN epilayer for sample grown on u-GaN using sapphire substrate while the latter gives a much smoother morphology. From the X-ray diffraction space mapping, the mosaicity of the sample structure for both samples were studied. Dislocations do not play a significant role in the structural properties of InGaN grown on free-standing GaN since the FWHM based on the Δ ω is relatively small (± 0.15°) in the case of InGaN/GaN on free-standing GaN substrate as compared to that on sapphire (± 0.35°). The wider spread in Δω-2θ value for InGaN layer on free-standing GaN also suggested the effect of compositional pulling with increasing InGaN layer thickness.  相似文献   

15.
J.H. Yang  D.V. Dinh 《Thin solid films》2009,517(17):5057-5060
A gallium nitride (GaN) epitaxial layer was grown by metal-organic chemical vapor deposition (MOCVD) on Si (111) substrates with aluminum nitride (AlN) buffer layers at various thicknesses. The AlN buffer layers were deposited by two methods: radio frequency (RF) magnetron sputtering and MOCVD. The effect of the AlN deposition method and layer thickness on the morphological, structural and optical properties of the GaN layers was investigated. Field emission scanning electron microscopy showed that GaN did not coalesce on the sputtered AlN buffer layer. On the other hand, it coalesced with a single domain on the MOCVD-grown AlN buffer layer. Structural and optical analyses indicated that GaN on the MOCVD-grown AlN buffer layer had fewer defects and a better aligned lattice to the a- and c-axes than GaN on the sputtered AlN buffer layer.  相似文献   

16.
ZnO nanowires were grown on a-plane GaN templates by chemical vapor deposition (CVD) without employing a catalyst. The a-plane GaN templates were pre-deposited on an r-plane sapphire substrate by metal-organic CVD. The resulting ZnO nanowires grow in angles off- related to the GaN basal plane. X-ray diffraction (XRD) spectra showed that the ZnO layer was grown with a heteroepitaxial relationship of (110)ZnO||(110)GaN. Photoluminescence spectra measured at 17 K exhibited near-band-edge emission at 372 nm with a full width at half maximum of 10 nm. The growth mechanism on a-GaN was the Volmer-Weber (VW) mode and differed from the Stranski-Krastanow (SK) mode observed for growth on c-GaN. This difference results from the higher interfacial free-energy on the a-plane between ZnO and GaN than that on the c-plane orientation.  相似文献   

17.
Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited onR-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O7?δ (YBCO) thin films. An ion beam channeling minimum yield of ~3% was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films onR-plane sapphire. HighT c andJ c were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were ~4 mω at 77 K and 25 GHz.  相似文献   

18.
Dong Chan Kim 《Thin solid films》2009,518(4):1185-1540
MgZnO films with a small quantity of Mg were grown on c-sapphire substrates coated with a thin MgO buffer layers by metalorganic chemical vapor deposition. The MgO buffer layer causes improvement in the structural, optical, and electrical properties of subsequently deposited MgZnO thin films, when compared to MgZnO films deposited without a buffer layer. The MgZnO films with a MgO buffer layer grown at 330 °C showed the best performance. Transmission electron microscopy revealed that the cubic phase MgO buffer layer promoted the epitaxial behavior of MgZnO, where the planar relationships of the wurtzite-MgZnO/cubic-MgO/sapphire heterostructures mainly were MgZnO(0001)//MgO(001)//sapphire(0001) and MgZnO(11?00)//MgO(110)//sapphire(112?0). It resulted in lower lattice mismatch between MgO and MgZnO by domain epitaxy of 2/1 and enhancement in preferred growth of the MgZnO films along the c-axis.  相似文献   

19.
Stress states in GaN epilayers grown on Si (1 1 1) and c-plane sapphire, and their effects on built-in piezoelectric field induced by compressive stress in InGaN/GaN multi-quantum well (MQW) light-emitting diodes (LEDs) were investigated using the electroreflectance (ER) spectroscopic technique. Relatively large tensile stress is observed in GaN epilayers grown on Si (1 1 1), while a small compressive stress appears in the film grown on c-plane sapphire. The InGaN/GaN MQWs of LED on c-plane sapphire substrate has a higher piezoelectric field than the MQWs of LEDs on Si (1 1 1) substrate by about 1.04 MV/cm. The large tensile stress due to lattice mismatch with Si (1 1 1) substrate is regarded as external stress. The external tensile stress from the Si substrate effectively compensates for the compressive stress developed in the active region of the InGaN/GaN MQWs, thus reducing the quantum-confined Stark effect (QCSE) by attenuating the piezoelectric polarization from the InGaN layer.  相似文献   

20.
K.H. Nam 《Thin solid films》2010,518(23):7029-7032
ZnO films were grown on Si (100) and quartz substrates by inductively coupled plasma-assisted chemical vapor deposition using diethylzinc, O2, and Ar. ZnO films with the (002) preferred orientation (PO) were formed at substrate temperatures > 250 °C regardless of any other changes made to process variables, since the (002) plane has the lowest formation energy with the highest number of unsaturated Zn-ZnO or O-ZnO bonds. At temperatures < 250 °C, the a-axis plane PO such as (100), (110), and (101) as well as the c-axis (002) plane PO were able to form by varying the temperature, plasma power, and deposition rate. The a-axis PO was formed when the radio frequency power was high enough to produce a crystalline ZnO film but was insufficient to form a (002) PO. The a-axis PO was also formed at higher deposition rates ≥ 20 nm/min when the radio frequency power was high enough to produce crystalline ZnO film. Since the (002) plane grew slowly, the grain exposing (002) plane was overgrown by the grains of the a-axis plane at higher deposition rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号