首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aluminum doped zinc oxide (AZO) thin films prepared by radio-frequency (RF) magnetron sputtering at various RF power were treated by hydrogen plasma to enhance the characteristics for transparent electrode applications. The hydrogen plasma treatment was carried out at 300 °C in a plasma enhanced chemical vapor deposition system. X-ray diffraction analysis shows that all AZO films have a (002) preferred orientation and film crystallinity seems no significant change after plasma treatment. The plasma treatment not only significantly decreases film resistivity but enhances electrical stability as aging in air ambient. The improved electrical properties are due to desorption of weakly bonded oxygen species, formation of Zn-H type species and passivation of deep-level defects during plasma treatment.  相似文献   

2.
Halina Czternastek 《Vacuum》2008,82(10):994-997
Al-doped ZnO films were prepared by the dc magnetron sputtering technique on Suprasil-1 substrates at a temperature of 470 K. Plasma-emission monitoring was used to stabilize oxygen flow to the deposition chamber. The effect of substrate position during deposition on the structural, electrical and optical properties of the films was investigated. It was found that preparation of low-resistance films with high optical transmission over the visible region is possible under condition of low plasma effects on the growing film.  相似文献   

3.
We have investigated the electrical, optical, structural, and annealing properties of indium zinc tin oxide (IZTO) films prepared by an unbalanced radio frequency (RF) magnetron sputtering at room temperature, in a pure Ar ambient environment. It was found that the electrical and optical properties of unbalanced RF sputter grown IZTO films at room temperature were influenced by RF power and working pressure. At optimized growth condition, we could obtain the IZTO film with the low resistivity of 3.77 × 10− 4 Ω cm, high transparency of ~ 87% and figure of merit value of 21.2 × 10− 3Ω− 1, without the post annealing process, even though it was completely an amorphous structure due to low substrate temperature. In addition, the field emission scanning electron microscope analysis results showed that all IZTO films are amorphous structures with very smooth surfaces regardless of the RF power and working pressure. However, the rapid thermal annealing process above the temperature of 400 °C lead to an abrupt increase in resistivity and sheet resistance due to the transition of film structure from amorphous to crystalline, which was confirmed by X-ray diffraction examination.  相似文献   

4.
Transparent and conductive Al-doped ZnO (AZO) thin films were deposited on substrates including alkali-free glass, quartz glass, Si, and SiO2 buffer layer on alkali-free glass by using radio frequency magnetron sputtering. The effects of different substrates on the structural, electrical and optical properties of the AZO films were investigated. It was found that the crystal structures were remarkably influenced by the type of the substrates due to their different thermal expansion coefficients, lattice mismatch and flatness. The AZO film (100 nm in thickness) deposited on the quartz glass exhibited the best crystallinity, followed sequentially by those deposited on the Si, the SiO2 buffer layer, and the alkali-free glass. The film deposited on the quartz glass showed the lowest resistivity of 5.14 × 10− 4 Ω cm among all the films, a carrier concentration of 1.97 × 1021 cm− 3 and a Hall mobility of 6.14 cm2/v·s. The average transmittance of this film was above 90% in the visible light spectrum range. Investigation into the thickness-dependence of the AZO films revealed that the crystallinity was improved with increasing thickness and decreasing surface roughness, accompanied with a decrease in the film resistivity.  相似文献   

5.
Jung-Min Kim 《Thin solid films》2010,518(20):5860-1267
100 nm Al-doped ZnO (AZO) thin films were deposited on polyethylene naphthalate (PEN) substrates with radio frequency magnetron sputtering using 2 wt.% Al-doped ZnO target at various deposition conditions including sputtering power, target to substrate distance, working pressure and substrate temperature. When the sputtering power, target to substrate distance and working pressure were decreased, the resistivity was decreased due to the improvement of crystallinity with larger grain size. As the substrate temperature was increased from 25 to 120 °C, AZO films showed lower electrical resistivity and better optical transmittance due to the significant improvement of the crystallinity. 2 wt.% Al-doped ZnO films deposited on glass and PEN substrates at sputtering power of 25 W, target to substrate distance of 6.8 cm, working pressure of 0.4 Pa and substrate temperature of 120 °C showed the lowest resistivity (5.12 × 10− 3 Ω cm on PEN substrate, 3.85 × 10− 3 Ω cm on glass substrate) and high average transmittance (> 90% in both substrates). AZO films deposited on PEN substrate showed similar electrical and optical properties like AZO films deposited on glass substrates.  相似文献   

6.
X-ray diffraction stress analyses have been performed on two different thin films deposited onto silicon substrate: ZnO and ZnO encapsulated into Si3N4 layers. We showed that both as-deposited ZnO films are in a high compressive stress state. In situ X-ray diffraction measurements inside a furnace revealed a relaxation of the as-grown stresses at temperatures which vary with the atmosphere in the furnace and change with Si3N4 encapsulation. The observations show that Si3N4 films lying on both sides of the ZnO film play an important role in the mechanisms responsible for the stress relaxation during heat treatment. The different temperatures observed for relaxation in ambient and argon atmospheres suggest that the thermally activated stress relaxation may be attributed to a variation of the stoichiometry of the ZnO films. The present observations pave the way to fine tuning of the residual stresses through thermal treatment parameters.  相似文献   

7.
Residual stresses in sputtered ZnO films on Si are determined and discussed. By means of X-ray diffraction, we show that as-deposited ZnO films are highly compressively stressed. Moreover, a transition of stress is observed as a function of the post-deposition annealing temperature. After an 800 °C annealing, ZnO films are tensily stressed while ZnO films encapsulated by Si3N4 are stress-free. With the aid of in-situ X-ray diffraction under ambient and argon atmosphere, we argue that this thermally activated stress relaxation may be attributed to a variation of the stoichiometry of the ZnO films.  相似文献   

8.
Aluminum-doped zinc oxide films on glass are promising substrates for use in thin film solar cells based on amorphous and amorphous/microcrystalline silicon absorber material. The films can be produced by magnetron sputtering on large scale at relative low cost. Especially reactive sputtering of metallic Zn/Al compound targets is a cheap way to produce films at high deposition rate. One drawback of amorphous silicon is the low absorption in the near infrared spectral range. Wet chemical etching has been used to produce a rough TCO surface that enables light trapping in the absorber. The etching behaviour of ZnO:Al films can be tuned by changing oxygen partial pressure during deposition. The etching behaviour is compared to ZnO structure and discussed regarding the performance of solar cells deposited onto the etched films.  相似文献   

9.
Al-doped ZnO thin films were deposited by radio frequency magnetron sputtering using a ZnO target with 2 wt.% Al2O3. The structures and properties of the films were characterized by the thin film X-ray diffraction, high resolution transmission electron microscopy, Hall system and ultraviolet/visible/near-infrared spectrophotometer. The Al-doped ZnO film with high crystalline quality and good properties was obtained at the sputtering power of 100 W, working pressure of 0.3 Pa and substrate temperature of 250 °C. The results of further structure analysis show that the interplanar spacings d are enlarged in other directions besides the direction perpendicular to the substrate. Apart from the film stress, the doping concentration and the doping site of Al play an important role in the variation of lattice parameters. When the doping concentration of Al is more than 1.5 wt.%, part of Al atoms are incorporated in the interstitial site, which leads to the increase of lattice parameters. This viewpoint is also proved by the first principle calculations.  相似文献   

10.
Ga doped ZnO(GZO)/Cu/GZO multilayers were deposited by magnetron sputtering on polycarbonate substrates at room temperature. We investigated the structural, electrical, and optical properties of multilayers at various thicknesses of Cu and GZO layers. The lowest resistivity value of 3.3 × 10− 5 Ω cm with a carrier concentration of 2.9 × 1022 cm− 3 was obtained at the optimum Cu (10 nm) and GZO (10 nm) layer thickness. The highest value of figure of merit φTC is 2.68 × 10− 3 Ω− 1 for the GZO (10 nm)/Cu(10 nm)/GZO(10 nm) multilayer. The highest average near infrared reflectivity in the wavelength range 1000-2500 nm is as high as 70% for the GZO(10 nm)/Cu(10 nm)/GZO(10 nm) multilayer.  相似文献   

11.
This article reports the comparison of structure and properties of titanium aluminum nitride (TiAlN) films deposited onto Si(100) substrates under normal and oblique angle depositions using pulsed-DC magnetron sputtering. The substrate temperature was set at room temperature, 400 °C and 650 °C, and the bias was kept at 0, − 25, − 50, and − 80 V for both deposition angles. The surface and cross-section of the films were observed by scanning electron microscopy. It was found that as the deposition temperature increases, films deposited under normal incidence exhibit distinct faceted crystallites, whereas oblique angle deposited (OAD) films develop a kind of “tiles of a roof” or “stepwise structure”, with no facetted crystallites. The OAD films showed an inclined columnar structure, with columns tilting in the direction of the incident flux. As the substrate temperature was increased, the tilting of columns nearly approached the substrate normal. Both hardness and Young's modulus decreases when the flux angle was changed from α = 0° to 45° as measured by nanoindentation. This was attributed to the voids formed due to the shadowing effect. The crystallographic properties of these coatings were studied by θ-2θ scan and pole figure X-ray diffraction. Films deposited at α = 0° showed a mixed (111) and (200) out-of-plane orientation with random in-plane alignment. On the other hand, films deposited at α = 45° revealed an inclined texture with (111) orientation moving towards the incident flux direction and the (200) orientation approaching the substrate normal, showing substantial in-plane alignment.  相似文献   

12.
Conditions for deposition of Al-doped ZnO (AZO) films on an organic light-emitting layer with a radio-frequency magnetron sputtering system were optimized to realize high deposition rate and low resistivity of the films. Damage inflicted on the organic layer by depositing the AZO film under the optimized deposition conditions was studied from photoluminescence, UV-Vis and Fourier transform infrared spectroscopy spectra using tris(8-hydroxyquinolinato)aluminium as a model organic compound. We found that damage to the organic layer was lessened by increasing the magnetic field from a normal intensity of 0.02 T to 0.1 T. The damage to the organic layer was further lessened by inserting a grounded grid electrode between a target and the substrate.  相似文献   

13.
RF magnetron sputtering has been employed to manufacture undoped and Cd doped (3%, 10%, and 20%) ZnO (CZO) films. X-ray diffraction (XRD) results revealed that the films have preferential orientation along (002) plane with hexagonal structure, and there are no secondary peaks. It is observed from the Hall Effect measurement that CZO films posses n-type conductivity, and the carrier concentration does not vary much with Cd concentration. On the other hand, the band gap estimated from Tauc’s plot shows that band gap decreased with increase in Cd concentration. Red shift was observed in photoluminescence spectrum. Ethanol, methanol, and ammonia at gas concentration range of 50–200?ppm were exposed on the grown CZO films at different temperatures. Among the various concentrations of the films, CZO having 20% Cd exhibited better gas response toward methanol, while CZO with 10% Cd showed maximum gas response toward ammonia gas. This has been explained by grain boundary barrier (GBB) and double Schottky potential barrier mechanisms.  相似文献   

14.
Cr-Ni-N coatings were deposited on 304 stainless steel substrates using a conventional direct current magnetron reactive sputtering system in nitrogen-argon reactive gas mixtures. The influence of Ni content (0 ≦ x ≦ 20 at.%) on the coating composition, microstructure, and tribological properties was investigated by glow discharge optical spectroscopy, X-ray diffraction and transmission electron microscopy, scanning electron microscopy (SEM), nano-indentation, and pin-on-disk tests. The results showed that microstructure and properties of coatings changed due to the introduction of Ni. The ternary Cr-Ni-N coatings exhibited solid solution structures in spite of the different compositions. The addition of Ni strongly favoured preferred orientation growth of <200>. This preferred orientation resulted from the formed nano-columns being composed of grains with the same crystallographic orientation, as confirmed by SEM cross-sectional observations. The mechanical properties including the nano-hardness and reduced Young's modulus decreased with increasing Ni content. Pin-on-disk tests showed that low Ni content coatings presented higher abrasion resistance than high Ni content coatings.  相似文献   

15.
Thin films in the Cr-C system with carbon content of 25-85 at.% have been deposited using non-reactive DC magnetron sputtering from elemental targets. Analyses with X-ray diffraction and transmission electron microscopy confirm that the films are completely amorphous. Also, annealing experiment show that the films had not crystallized at 500 °C. Furthermore, X-ray spectroscopy and Raman spectroscopy show that the films consist of two phases, an amorphous CrCx phase and an amorphous carbon (a-C) phase. The presence of two amorphous phases is also supported by the electrochemical analysis, which shows that oxidation of both chromium and carbon contributes to the total current in the passive region. The relative amounts of these amorphous phases influence the film properties. Typically, lower carbon content with less a-C phase leads to harder films with higher Young’s modulus and lower resistivity. The results also show that both films have lower currents in the passive region compared to the uncoated 316L steel substrate. Finally, our results were compared with literature data from both reactively and non-reactively sputtered chromium carbide films. The comparison reveals that non-reactive sputtering tend to favour the formation of amorphous films and also influence e.g. the sp2/sp3 ratio of the a-C phase.  相似文献   

16.
ZnO films deposited at different oblique angles of 40, 60 and 80°, under different Ar pressures 0.27, 0.67, 1.33 and 2.67 Pa, DC currents of 0.15 and 0.25 A, and distances of 10-15 cm from the target were studied. It was found that the film grains grow at an angle to the substrate when deposition angle is above 40°. It was shown that the grains consisted of a number of small crystals growing one on top of the other and shifted towards the target with the crystal orientation not along the grain growth but perpendicular to the substrate. Crystal size decreased with the deposition angle and internal stress disappeared when α = 80°. It was found that 1.33 Pa pressure provided the best balance between the deposition parameters. Growth rate reached maximum, samples had the biggest crystal size and high crystal density. However, crystal spatial alignment changed gradually with pressure and distance.  相似文献   

17.
We investigated the structural properties of Zn-polar ZnO films with low temperature (LT) ZnO and MgO buffer layers grown by plasma-assisted molecular beam epitaxy on (0001) c-Al2O3 substrates using X-ray diffraction and transmission electron microscopy (TEM). The effects of MgO buffer layer thickness and LT ZnO buffer layer thickness were also examined. The optimum thicknesses for better crystal quality were 8 and 40 nm. One-pair and two-pair LT ZnO/MgO buffer layers were employed, and the changes in the structural properties of the high-temperature (HT) ZnO films using such buffer layers were studied. Contrary to the general tendency of c-ZnO films, the HT ZnO films on the LT ZnO/MgO buffer layers showed higher full width at half maximum (FWHM) values for X-ray rocking curves (XRCs) with (0002) reflection than those with (101?1) reflection. Compared with the one-pair LT ZnO/MgO buffer layers, the FWHM values of (0002) XRCs markedly decreased, whereas those of (101?1) XRCs slightly increased due to the insertion of one more pair of LT ZnO/MgO buffer layers into the previous film with one-pair LT ZnO/MgO buffer layers. The cross-sectional TEM observations with the two-beam condition confirmed that the screw dislocation was the dominant threading dislocation type—a finding that agreed well with the XRC results. On the basis of the plan-view TEM observations, the densities of the total threading dislocations for the HT ZnO films with the one- and two-pair LT ZnO/MgO buffer layers were determined as 2.3 × 109 cm− 2 and 1.6 × 109 cm− 2, respectively. The results imply that the crystal quality of Zn-polar ZnO films can be improved by two-pair LT ZnO/MgO buffer layers, and types of threading dislocations can be modified by adjusting the buffer system.  相似文献   

18.
Huili Wang  Yibin Li  Deen Sun 《Thin solid films》2008,516(16):5419-5423
Nanocrystalline titanium carbide (TiC) thin films were prepared by magnetron sputtering deposition at 473 K. The effect of substrate bias on microstructure and mechanical properties was studied in details using X-ray photoelectron spectroscopy, X-ray diffraction, field emission scanning electron microscopy, indentation and scanning microscratch. The TiC films exhibit a (111) preferential orientation. Substrate bias decreases grain size and deposition rate of the TiC films. The TiC films have columnar structure which becomes finer at high substrate bias. Nanoindentation hardness, Young's modulus, and toughness of the films are increased as the substrate bias goes up. However, the adhesion peaks at substrate bias of − 100 V and drops when bias is increased further.  相似文献   

19.
ZnO thin films were deposited on glass substrates by direct current (DC) sputtering technique at room temperature (RT) to 400 °C with a 99.999% pure ZnO target. Then the samples deposited at RT were annealed in air from the RT to 400 °C. The effects of substrate temperature (Ts) and annealing treatment (Ta) on the crystallization behavior and the morphology have been studied by X-ray diffraction and atomic force microscopy. We also compared the structural properties of samples deposited at 400 °C on glass to those deposited on Pt/silicon substrate. The resistivity, surface roughness and size of the grains have also been studied and correlated to the thickness of ZnO films deposited on Pt/Si substrates. The experimental results reveal that the substrate has a major influence on the structural and morphological properties. For the films deposited on glass, below 400 °C, Ts and Ta have a similar influence on the structure of the films. Moreover, the ZnO samples deposited at RT and annealed in air have poor electrical properties.  相似文献   

20.
This work reports a method used to control Al doping of ZnO thin films deposited by high-power impulse magnetron sputtering of a pure Zn target in low-pressure Ar/O2 gas mixture. The method uses sputtering of an electrically negative biased aluminum electrode placed in the proximity of the negative glow of the magnetron discharge. Resonant laser absorption measurements of Al atom concentration in vapor phase and the X-ray Photoelectron Emission Spectroscopy measurements of Al concentration in the deposited ZnO:Al films confirm that the electrode biasing potential is the key parameter that controls the Al doping process. Optically transparent ZnO:Al films with resistivity as low as 3.6 × 10− 3 Ω × cm have been obtained at an optimum value of Al concentration of 1.5 at.%. It has been found that the film electrical conductivity is limited by the effect of decreasing of crystalline grain size in the films with the increased Al doping concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号