首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The fabrication of non-spheric microns-thick layer lenses by continuous-wave laser deposition has been monitored by using an interferometric method. An infrared-transparent amorphous chalcogenide alloy has been used as base material. Results evidence the thermodynamic nature of this laser-assisted deposition process, with two distinct stages occurring in the deposition rates, namely, a first induction stage with thickness increasing at non-constant rate, and a second steady-state stage with thickness increasing at constant rate. The deposition process has been shown to be reproducible and it allows the tailoring of the thickness profile for promising fabrication of non-spheric layer lenses and free-form optics.  相似文献   

2.
Aluminum nitride (AlN) films were deposited using pulsed laser deposition (PLD) onto sapphire (0001) substrates with varying processing conditions (temperature, pressure, and laser fluence). We have studied the dependence of optical properties, structural properties and their correlations for these AlN films. The optical transmission spectra of the produced films were measured, and a numerical procedure was applied to accurately determine the optical constants for films of non-uniform thickness. The microstructure and texture of the films were studied using various X-ray diffraction techniques. The real part of the refractive index was found to not vary significantly with processing parameters, but absorption was found to be strongly dependent on the deposition temperature and the nitrogen pressure in the deposition chamber. We report that low optical absorption, textured polycrystalline AlN films can be produced by PLD on sapphire substrates at both low and high laser fluence using a background nitrogen pressure of 6.0 × 10− 2 Pa (4.5 × 10− 4 Torr) of 99.9% purity.  相似文献   

3.
Highly transparent and conducting indium oxide thin films are prepared on glass substrates from precursor solution of indium chloride. These films are characterized by X-ray diffraction, scanning electron microscopy and optical transmission. The preferential orientation of these films is found to be sensitive to deposition parameters. A comparative study has been made on the dependence on the thickness of the film on substrate temperatures with aqueous solution and 1:1 C2H5OH and H2O as precursors. Films deposited at optimum conditions have 167 nm thickness and exhibited a resistivity of 2.94 × 10−4 Ω m along with transmittance better than 82% at 550 nm. The analytical expressions enabling the derivation of the optical constants of these films from their transmission spectrum only have successfully been applied. Finally, the refractive index dispersion is discussed in terms of the single-oscillator Wemple and Didomenico model.  相似文献   

4.
The paper presents investigations of the optical properties of thin high-refractive-index silicon nitride (SiNx) and diamond-like carbon (DLC) films deposited by the radio-frequency plasma-enhanced chemical vapor deposition method for applications in tuning the functional properties of optical devices working in the infrared spectral range, e.g., optical sensors, filters or resonators. The deposition technique offers the ability to control the film's optical properties and thickness on the nanometer scale. We obtained thin, high-refractive-index films of both types at deposition temperatures below 350 °C, which is acceptable under the thermal budget of most optical devices. In the case of SiNx films, it was found that for short deposition processes (up to 5 min long) the refractive index of the film increases in parallel with its thickness (up to 50 nm), while for longer processes the refractive index becomes almost constant. For DLC films, the effect of refractive index increase was observed up to 220 nm in film thickness.  相似文献   

5.
J.Q. Zhu  C.Z. Jiang  J.C. Han  C.Q. Hu 《Thin solid films》2008,516(10):3117-3122
To effectively protect and improve the transmittance of ZnS optical elements in the far infrared band, combined amorphous diamond (a-D) and amorphous hydrogenated germanium carbide (a-Ge1−xCx:H) films have been developed. The optical interference coatings were designed according to the layer optics theory. The a-D films, of which refractive index and film thickness were controlled by changing substrate bias and deposition time respectively, were deposited by filtered cathodic vacuum arc technology. The a-Ge1−xCx:H films were prepared by radio frequency sputtering technology. During this process their refractive index was modulated by changing the gas flow rate ratio and their film thickness was controlled by the flow rate ratio and deposition time. It has been shown that the combined films are superexcellent antireflective and protective coatings for ZnS optical elements.  相似文献   

6.
Lead-germanate thin films were developed on silicon substrates by pulsed laser deposition from bulk glassy targets of composition 0.4PbO-0.6GeO2, and micro-infrared transmittance measurements were performed to assess the state of the grown films. Measurements across the radius of films revealed surprisingly large spectral changes, reminiscent of lead-oxide variations in corresponding bulk glasses. To search for the origin of this effect, the infrared spectra were simulated by employing the rigorous expression for the transmittance of a bilayer system to take into full account multiple internal reflections in both thin film and substrate. The results showed that the profiles of the experimental spectra can be accurately described by using as input the complex refractive index of the target glassy material and by considering film thickness variations from the center to the edges of the film. This work demonstrates the strong influence of optical effects on the infrared spectra of thin films, and manifests also the effectiveness of infrared spectroscopy when coupled with rigorous calculations to characterize the structure of thin films.  相似文献   

7.
The optical properties of Bi2V1−xMnxO5.5−x {x = 0.05, 0.1, 0.15 and 0.2 at.%} thin films fabricated by pulsed laser deposition on platinized silicon substrates were studied in UV-visible spectral region (1.51-4.17 eV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data (Ψ and Δ) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder.  相似文献   

8.
Growing requirements for the optical and environmental stability, as well as the radiation resistance against high-power laser radiation, especially for optical interference coatings used in the ultraviolet spectral range, have to be met by new, optimised, thin-film deposition technologies. For applications in the UV spectral range, the number of useful oxide thin film materials is very limited due to the higher absorption at wavelengths near to the electronic bandgap of the materials. Applying ion-assisted processes offers the ability to grow dense and stable films, but in each case careful optimisation of the deposition process (evaporation rate, substrate temperature, bombarding gas, ion energy and ion current density) has to achieve a balance between densification of the layers and the absorption. High-quality coatings and multilayer interference systems with SiO2 as the low-index material can be deposited by various physical vapour deposition technologies, including reactive e-beam evaporation, ion-assisted deposition and plasma ion-assisted deposition. In order to improve the degradation stability of dielectric mirrors for use in UV free-electron laser optical cavities, a comparative study of the properties of SiO2, Al2O3 and HfO2 single layers was performed, and was addressed to grow very dense films with minimum absorption in the spectral range from 200 to 300 nm. The films were deposited by low-loss reactive electron-beam evaporation, by ion-assisted deposition using a ‘Mark II’ ion source, and by plasma ion-assisted deposition using the advanced plasma source. Optical and structural properties of the samples were studied by spectral photometry, infrared spectroscopy, X-ray diffraction and reflectometry, as well as by investigation of the surface morphology. The interaction of UV radiation with photon energy values close to the bandgap was studied. For HfO2 single layers, laser-induced damage thresholds at 248 nm were determined in the 1-on-1 and 1000-on-1 test modes as a function of the deposition technology and film thickness.  相似文献   

9.
Wang J  Maier RL  Schreiber H 《Applied optics》2008,47(13):C131-C134
Ion- and plasma-assisted deposition has been extensively used for the fabrication of high-performance optical films with dense and smooth microstructures that are essential for applications such as low-loss and environmentally stable optics. SiO(2) is a well-known amorphous material suitable for energetic deposition. SiO(2) single layers and SiO(2)-based single-cavity narrow-bandpass filters were prepared by plasma-ion-assisted deposition. The refractive index and film thickness were determined by variable-angle spectroscopic ellipsometry. The high compressive stress of the densified film was correlated to increased packing density. The center wavelength shift of the narrow-bandpass filters as a function of sample-temperature as well as high-temperature annealing was determined via spectral transmission measurement. Structural relaxation of the densified SiO(2) films was observed from the variation of the refractive index and physical thickness for the single layers and the center wavelength shift for the narrow-bandpass filters, suggesting elastic and plastic deformation of the densified films corresponding to a reversible and an irreversible center wavelength shift, respectively.  相似文献   

10.
This paper describes the optical properties of GLS thin films deposited by laser ablation technique. These results complement the structural and compositional data on the same specimens reported in the preceding papers. A systematic investigation of the energy dependence of the refractive index, optical absorption edge, Urbach edge and optical gap has been carried out as a function of increasing deposition energy density. The optical absorption coefficient as a function of photon energy, deduced from transmission (T) and reflection (R) measurements, shows a very large shift of the edge towards lower energies relative to that of bulk glass with increasing deposition energy density. The optical gap, as determined by Tauc extrapolation, and Urbach parameter have been determined as a function of deposition energy density. The changes in optical properties are correlated with the structural data.  相似文献   

11.
C-axis oriented Lithium Niobate (LiNbO3) thin films have been deposited onto epitaxially matched (001) sapphire substrate using pulsed laser deposition technique. Structural and optical properties of the thin films have been studied using the X-ray diffraction (XRD) and UV-Visible spectroscopy respectively. Raman spectroscopy has been used to study the optical phonon modes and defects in the c-axis oriented LiNbO3 thin films. XRD analysis indicates the presence of stress in the as-grown LiNbO3 thin films and is attributed to the small lattice mismatch between LiNbO3 and sapphire. Refractive index (n = 2.13 at 640 nm) of the (006) LiNbO3 thin films was found to be slightly lower from the corresponding bulk value (n = 2.28). Various factors responsible for the deviation in the refractive index of (006) LiNbO3 thin films from the corresponding bulk value are discussed and the deviation is mainly attributed to the lattice contraction due to the presence of stress in deposited film.  相似文献   

12.
The thin films were produced from tetrathoxysilane (TEOS) and TEOS/methanol mixtures by the plasma-enhanced chemical vapour deposition technique in a diode planar reactor capacitatively coupled to r.f. generator at 13.56 MHz. The optical properties of the films deposited on silicon substrates and on glass substrates were studied by means of spectrophotometry in the visible and monochromatic ellipsometry applied at the wavelength of 632.8 nm. The dependences of the deposition rate, the refractive and absorption indices on the deposition parameters were determined for the substrates mentioned. The X-ray photoelectron spectroscopy analyses were performed for the films deposited on the silicon substrates to find film composition dependences on the deposition conditions.  相似文献   

13.
The inherent optical nonlinearities of thin silver films   总被引:1,自引:0,他引:1  
Thin Ag films with the thickness of 80 Å were prepared by pulsed laser deposition technique. The films were grown on MgO(1 0 0) substrates under the nitrogen pressure of 5.0 Pa at room temperature. The surface images of the films were observed by atomic force microscopy. The linear optical properties of the films were studied in the wavelength range of 300–800 nm. The inherent third-order nonlinear optical responses coming from the silver material itself were determined by z-scan method at the wavelength of 532 nm with laser duration of 10 ns. The significant optical nonlinearities of the pure thin Ag films were determined to have the real and imaginary parts of the third-order nonlinear optical susceptibility (χ(3)) as 2.49 × 10−8 and 7.16 × 10−9 esu, respectively. The obtained χ(3) value of Ag films was about one order of magnitude larger than that of Ag colloids.  相似文献   

14.
Photo-patternable TiO2/organically modified silane hybrid films were prepared by combining a low-temperature sol–gel technique with a spinning–coating process. A ridge waveguide pattern was fabricated by ultraviolet light irradiation through a mask placed contact with the hybrid film in direct. Optical properties and photochemical activity of the hybrid film, including refractive index, thickness, propagation mode, and propagation loss, were studied and monitored by a prism coupling technique and Fourier transform infrared spectroscopy. The change of transmittance with exposure time was also observed by ultraviolet–visible spectroscopy. These results indicate that the hybrid film is potential application for fabrication of photonic devices by ultraviolet light irradiation. The structure of ridge waveguide pattern was characterized and studied by scanning electron microscope and surface profiler. The fabrication process of the as-prepared photosensitive hybrid film as compared with traditional binary mask has a great amount of advantages of cost-effective, simple, and smooth surface over non-photosensitive material methods.  相似文献   

15.
We performed optical analysis of bismuth niobate thin films using spectroscopic ellipsometry (SE). The films were grown on Pt/Ti/SiO2/Si substrates with pulsed laser deposition. Six films were prepared using various deposition temperatures and thermal-annealing times. The room-temperature SE spectra of these films were measured by a rotating-analyzer ellipsometer from 1.12 to 6.52 eV at incidence angles of 50, 55, 60, 65, and 70°. The resulting refractive indices and extinction coefficients show significant changes with deposition temperature and thermal annealing.  相似文献   

16.
Planar optical waveguides formed by Si ion implantation into PECVD SiO2 have been characterized by the dark mode spectroscopy method at a wavelength of 0.6328 μm. The measured effective index values of the guided modes have been used to investigate the optical properties of the core layers of the waveguides after different pre-implantation treatments. It was found that annealing the specimens before implantation, affected both the refractive index and thickness of the core layers. In the annealed specimens a thicker core layer and a larger relative refractive index difference between the core and the buffer layer resulted.  相似文献   

17.
S. Saloum  M. Naddaf 《Vacuum》2007,82(1):50-55
Deposition of amorphous silicone-like (Si:Ox:Cy:Hz) thin films in a remote RF hollow cathode discharge plasma using hexamethyldisoloxane as monomer and Ar as feed gas has been investigated for films optical constants and plasma diagnostic as a function of RF power (100-300 W) and precursor flow rate (1-10 sccm). Plasma diagnostic has been performed using Optical Emission Spectroscopy (OES). The optical constants (refractive index, extinction coefficient and dielectric constant) have been obtained by reflection/transmission measurements in the range 300-700 nm. It is found that the refractive index increases from 1.92 to 1.97 with increasing power from 100 to 300 W, and from 1.70 to 1.92 with increasing precursor flow rate from 1 to 10 sccm. The optical energy band gap Eg and the optical-absorption tail ΔE have been estimated from optical absorption spectra, it is found that Eg decreases from 3.28 to 3.14 eV with power increase from 100 to 300 W, and from 3.54 to 3.28 eV with precursor flow rate increase from 1 to 10 sccm. ΔE is found to increase with applied RF power and precursor flow rate increase. The dependence of optical constants on deposition parameters has been correlated to plasma OES.  相似文献   

18.
19.
Zinc oxide transparent conductive thin films were prepared using the pulsed laser deposition technique onto Corning glass substrates and the dependences of their optical and electrical properties on the thickness and the growth temperature were investigated. As shown, the films present 90% average transmittance, their energy gap position depending on the film thickness and the growth temperature. An additional absorption band was also observed near 3.44 eV, the position of its maximum also depending on the growth parameters. Finally, the electrical properties of the films were found to be affected mainly by the growth temperature and less by the thickness.  相似文献   

20.
A convenient method is described for optical characterization of thin films during growth. The method has been demonstrated on lead zirconate titanate (PZT) films deposited by pulsed laser ablation for various temperatures. The optical constants of the PZT films as well as the film growth rate were determined in situ by fitting (with three free parameters) the calculated reflectance as a function of film thickness to the experimental reflectance curve as a function of deposition time, as obtained by unpolarized laser reflectometry. The fitted parameters are the uniform complex PZT refractive index and the layer thickness (assumed proportional to time), with the complex refractive index of the platinum substrate being measured previously. These results compare well with the subsequent ellipsometric measurements made to assess the precision of the reflectometry technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号