首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cr-doped diamond-like carbon (DLC) films were synthesized using a cathodic arc evaporation (CAE) process. The thermal oxidation behavior of Cr-doped DLC films was investigated using thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). The phase identification and microstructural examinations were conducted by X-ray diffraction, scanning electron spectroscopy (SEM), transmission electron spectroscopy (TEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) in order to understand the characteristics of Cr-doped DLC films. The as-deposited Cr-doped DLC film exhibits a lamellar structure observed by TEM. A significant weight loss of film results from the thermal oxidation of carbon occurred at 290 to 342 °C. At the temperature higher than 342 °C, slight weight gain of specimen was observed due to the thermal oxidation of the underlying CrCxNy and CrN interlayer. By heat-treated specimens from 200 to 400 °C, Raman spectra reveal the increase of ID/IG value conforming to the graphitiation process of the Cr-doped DLC films. Finally, surface reactions of the annealed films using XPS analysis were discussed.  相似文献   

2.
电化学沉积DLC膜及其表征   总被引:5,自引:1,他引:4  
采用电化学沉积方法,甲醇有机溶剂作碳源,在直流电源作用下在单晶硅表面沉积得到碳薄膜。薄膜不溶于苯、丙酮等有机溶剂,具有较高的硬度(16GPa左右),用AFM、Raman和FTIR分析手段对该薄膜表面形貌和结构进行表征,Raman和FTIR结果表明电化学沉积得到的是含氢的类金刚石碳薄膜。通过研究样品薄膜的XPS和XAES谱图特征,进一步证实薄膜是DLC薄膜,并用线性插入法估算出样品薄膜中SP^3的相对含量为60%,同时推测了电化学沉积DLC薄膜的生长机理。  相似文献   

3.
Carbon films and clusters have been formed by direct ion beam deposition. In all experiments crystalline n-Si 〈1 0 0〉 wafers with the 300 nm thermal SiO2 film have been used as substrates. Effects of thermally microstructured Ni and substrate temperature were studied. Chemical structure of the carbon films was investigated using Raman spectroscopy. Surface morphology was studied by atomic force microscopy (AFM). Supplemental research on sheet resistance of the films has been performed. Rough diamond-like carbon film was grown onto the catalytic layer at 400 K temperature, and surface of the diamond-like carbon film deposited directly onto the SiO2 layer at 400 K temperature was very smooth. At 750 K growth of the array of cylindrically shaped clusters was observed by AFM in the case of catalytically assisted deposition. Raman spectra of deposited films were typical for glassy carbon and/or carbon nanotubes with the carbonaceous deposits. Catalyticless deposition at 750 K temperature resulted in the formation of the conductive polymer-like carbon film with the graphite clusters in it.  相似文献   

4.
Kuo-Cheng Chen 《Thin solid films》2010,518(24):7320-332
Synthesis of diamond-like carbon (DLC) films with UV-induced-hydrophilicity function was studied by inductively-coupled plasma (ICP) chemical vapor deposition. Titanium tetraisopropoxide (TTIP) and oxygen gases were employed as the precursors to deposit diamond-like nanocomposite films containing titanium dioxide (TiO2) nanoparticles. X-ray diffraction and high-resolution transmission electron microscopy revealed that TiO2 nanocrystallites were formed in the DLC films when oxygen concentration was higher than TTIP concentration during deposition. The DLC nanocomposite film was hydrophobic without ultraviolet (UV) irradiation, and became highly hydrophilic under UV irradiation, exhibiting the self-cleaning effect. A very broad peak centered at 1580 cm− 1 was observed in the Raman spectra confirming the formation of DLC films. The hardness of the film was about 8 GPa with a stress of 3 GPa. ICP was essential in forming the photocatalytic TiO2 nanoparticles in the DLC matrix.  相似文献   

5.
Diamond-like carbon (DLC) films were deposited by a cathodic arc plasma evaporation (CAPD) process, using a mechanical shield filter combined with a magnetic filter with enhanced arc structure at substrate-bias voltage ranging from − 50 to − 300 V. The film characteristics were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM). The mechanical properties were investigated by using a nanoindentation tester, scratch test and ball on disc wear test. The Raman spectra of the films showed that the wavenumber ranging from 900 to 1800 cm− 1 could be deconvoluted into 1140 cm− 1, D band and G band. The bias caused a significant effect on the sp3 content which was increased with the decreasing of ID/IG ratio. The XPS spectra data of the films which were etched by H+ plasma indicated the sp3 content are higher than those of the as-deposited DLC films. This implied that there is a sp2-rich layer present on the surface of the as-deposited DLC films. The nanoindentation hardness increased as the maximum load increased. A 380 nm thick and well adhered DLC film was successfully deposited on WC-Co substrate above a Ti interlayer. The adhesion critical load of the DLC films was about 33 N. The results of the wear tests demonstrated that the friction coefficient of the DLC films was between 0.12 and 0.2.  相似文献   

6.
Titanium-doped diamond-like carbon (Ti-doped DLC) films with a Ti content of 1.1 at.% were synthesized on a Si substrate by a process that involves filtered cathodic vacuum arc (FCVA) and metal vapor vacuum arc (MeVVA) systems. The effect of annealing temperature on the microstructure, surface roughness, hardness and electrical resistivity of the resulting films was evaluated in this study. The Raman spectra revealed that the degree of graphitization of the Ti-doped DLC thin films was increased from 25 to 600 °C and the microstructure of the films is converted to a nano-crystalline graphite structure. The resulting films maintain a smooth surface after the annealing process. The hardness of the Ti-doped DLC films increases as the annealing temperature increases up to 400 °C because the induced defects and the inter-atomic bonds are repaired after the annealing process. But the hardness decreases at the higher temperature due to the increase of number and size of the nano-crystalline graphitic domains. Since the degree of graphitization of the thin films increases, the electrical resistivity of the Ti-doped DLC thin films decreases from 0.038 to 0.006 Ω cm.  相似文献   

7.
V. Anita  T. Butsuda  O. Takai 《Vacuum》2006,80(7):736-739
The mechanical and electrical properties of aluminium-doped diamond-like carbon (DLC) thin films obtained with a hybrid method combining hollow magnetron discharge sputtering and plasma-enhanced chemical vapour deposition (PECVD) are reported. The ratio between the mass flows of methane reactive gas and argon inert gas was found to have a big influence on the properties of doped DLC films. For low mass flow of methane gas the cathode surface was kept in a metallic state. By increasing methane mass flow the cathode surface became to be covered with DLC and the behaviour of the discharge changed, influencing the properties of deposited films. The lowest resistivity (10−4 Ω cm) of thin films was obtained in the metallic state of the cathode but without DLC character, as indicated by Raman measurements. The resistivity increased in the intermediate mode (0.01 Ω cm) and attained higher value (1 Ω cm) in the poisoned state of the cathode. These films presented DLC character, with D and G bands, as revealed by Raman measurements.  相似文献   

8.
Instead of the sophisticated deposition processes and boron sources reported in literature, the study used the radio frequency magnetron sputtering method to prepare boron-doped diamond-like carbon (DLC) films with p-type conduction. The adopted sputtering targets were composed of boron pellets buried in a graphite disc. The undoped DLC films prepared exhibited n-type conduction, based on the Hall-effect measurement. For boron content ≥ 2.51 at.%, the films showed semiconductor behavior converted from n-type to p-type conduction after annealing at 450 °C. B-DLC films with a boron content of 5.91 at.% showed a maximum carrier concentration of 1.2 × 1019 cm−3, a mobility of 0.4 cm2/V s, and an electrical resistivity of 1.8 Ω cm. The results of XPS and Raman spectra indicated that the motion of boron atoms was thermally activated during post-annealing, helping promote the formation of C-B bonds in the films. Moreover, the doping of boron in DLC films decreased sp3 bonding and facilitated carbon atoms to form sp2 bonding and graphitization.  相似文献   

9.
Y.S. Zou  Y.F. Wu  C. Sun 《Vacuum》2009,83(11):1406-1629
The nitrogen incorporated diamond-like carbon films were deposited on Si (100) substrates by arc ion plating (AIP) under different N2 content in the gas mixture of Ar and N2. The influence of N2 content on the film microstructure and mechanical properties was studied by atomic force microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and nanoindentation. It was found that the hardness (H), elastic modulus (E), elastic recovery (R) and plastic resistance parameter (H/E) decrease with increasing the nitrogen content. The decrease of mechanical properties of DLC films resulted from nitrogen incorporation was associated with total sp3 carbon bond content and N-sp3C bond content. The structural modification as well as mechanical properties of the annealed nitrogen incorporated diamond-like carbon films was investigated as a function of annealing temperature. Raman spectra indicate that the ID/IG ratio starts to increase and G peak position shifts upward at the annealing temperature over 500 °C. The hardness and elastic modulus of thermally annealed nitrogen incorporated DLC films decreased slightly at lower annealing temperature and then significantly decreased at higher annealing temperature. The strong covalent bonding between C and N atoms is expected to be effective on their thermal stability enhancement.  相似文献   

10.
The structure and surface morphology of Ni-incorporated diamond like carbon (Ni:DLC) films have been investigated. These films were deposited on Si substrates using pulsed laser deposition (PLD) technique. A KrF Excimer laser (λ = 248 nm) was used for co-ablation from multi component Ni–graphite target. The concentration of Ni was varied by ablating the Ni part of the target with various numbers of laser pulses. The SEM and AFM analysis reveals that the surface is composed of segregates of Ni which increases with the increase in Ni content during the growth process. The structural investigations by XRD and Raman spectroscopy provided information about the orientation of the incorporated constituent and the ordering of the carbon species. Maximum height of the nano structures which were observed on the surface was ∼50 nm. The G-peak of the graphite was shifted towards higher wave number due to enhancement in SP2 sites which have been increased due to the increase in the Ni concentration. A small change in the surface roughness ranging from 7.78 nm to 13.1 nm due to increased Ni concentration was also observed.  相似文献   

11.
The hydrogen-free diamond-like carbon (DLC) films with transition metal (TM = Cr, Ag, Ti, Ni) interlayer (bilayer and multilayer) were deposited on to stainless steel and silicon substrates using pulsed laser deposition technique. Secondary ion mass spectroscopy (SIMS) confirmed that the films were hydrogen free. Incorporation of chromium inter layer reduced the stress value by about 3 GPa as determined by micro Raman spectroscopy. Incorporation of the TM inter layer enhanced the photoluminescence (PL) intensity as compared to the monolithic DLC films. The optical band gap determined by spectroscopic ellipsometry for DLC/TM films was found to be in the range of 1.56–1.67 eV.  相似文献   

12.
Hydrogen-free diamond-like carbon (DLC) films were prepared by means of microwave electron cyclotron resonance plasma enhanced direct current magnetron sputtering. To study the influence of enhanced plasma on film fabrication and properties, the structures as well as mechanical and electrical properties of these films were studied as a function of applied microwave power. Results showed that higher microwave power could induce higher plasma density and electron temperature. The hardness increased from 3.5 GPa to 13 GPa with a variation of microwave power from 0 W to 1000 W. The resistivity showed a drastic increase from 4.5 × 104 Ωcm at 0 W to 1.3 × 1010 Ωcm at 1000 W. The variation of the intensity ratio I(D)/I(G) and the position of the G-peak of the DLC films with respect to changes in microwave power were also investigated by Raman spectroscopy.  相似文献   

13.
Kuan-Wei Chen 《Thin solid films》2009,517(17):4916-4920
In this study, thin diamond-like carbon (DLC) films were deposited onto a steel substrate. By using the plasma immersion ion implantation (PIII) technique, a nitrogen layer was formed on the steel surface before depositing the DLC films. This PIII formed nitrogen layer, which acts as the buffer layer, has apparently increased the adhesion between the DLC film and the steel substrate. The microstructures, the nanomechanical properties, and the adhesion of the DLC were investigated by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), nanoindentation, and nanoscratch. Results show that the hardness and Young's modulus were significantly improved, up to 2 to 9 times; while the implantation depth and the microstructure of the nitrogen layers vary with nitrogen/hydrogen ratio (N:H = 1:0, 1:1, 1:3). Raman analyses indicate that the I(D)/I(G) ratio increases with the thickness of DLC film. By using the PIII technique in the steel substrate, the adhesion of the DLC film onto the substrate is greatly enhanced, and wear resistance is elevated if the DLC film is sufficiently thick.  相似文献   

14.
Ruqiang Bao 《Thin solid films》2010,519(1):164-2642
Boron carbide thin films were deposited by radio frequency (RF) magnetron sputtering and characterized by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and high resolution transmission electron microscopy. The results reveal that the structure of thin films deposited at substrate temperatures lower than 350 °C is amorphous. We found that there are four chemical states for carbon in amorphous boron carbide thin films deposited by RF magnetron sputtering. One is the segregated carbon in form of the graphitic inclusions in the thin film identified by Raman spectroscopy and Raman mapping using two strong peaks at ~ 1360 cm− 1 and ~ 1590 cm− 1, but the XPS results show that the graphitic inclusions do not connect to the substrate directly. On the surface the carbon forms C=O bonds characterized by the peak of C1s core level at 285.0 eV besides B-C bonds in the boron carbide with the peak of C1s being at 282.8 eV. The detailed analysis of B-C bonds in the boron carbide shows that there are two states for carbon atoms in B-C bonds: in the C-B-C models with C1s peak at 282.3 eV and in the icosahedra with C1s peak at 283.3 eV.  相似文献   

15.
In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main composition of the filmswas carbon. In the Raman spectrum, there were a broad peak at 1350 cm~(-1) and a broad peak at 1600 cm~(-1), which indicatedthat the films were DLC films.  相似文献   

16.
A pulse-modulated direct-current methane plasma is used to deposit amorphous hydrogenated carbon (a-C:H) films on Si and polymethyl methacrylate (PMMA) substrates. The structure and mechanical properties of the films are examined by applying a negative pulse bias voltage of 0.5 to 3 kV to the substrate at a pulse bias period of 100 to 200 μs. The deposition rate on both Si and PMMA increases with increasing the net input power, independent of the pulse period. The Raman spectra demonstrate that the films on Si are diamond-like carbon (DLC), while those on PMMA are polymer-like or soft amorphous carbon because of higher crystallinity of the sp2 phase and lower nanoscale hardness. The residual compressive stress of the films on PMMA is constantly low ranging from 0 to 2 GPa due exclusively to high flexibility of PMMA, which causes the easy relief of the stress and thus the density decrease in the films.  相似文献   

17.
Nitrogen doped diamond-like carbon (DLC:N) thin films were deposited on p-Si (100) substrates by DC magnetron sputtering with different nitrogen flow rates at a substrate temperature of about 100 degrees C. The chemical bonding structure of the films was characterized by X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy. The adhesive strength and surface morphology of the films were studied using micro-scratch tester and scanning electron microscope (SEM), respectively. The electrochemical performance of the films was evaluated by potentiodynamic polarization testing and linear sweep voltammetry. The electrolytes used for the electrochemical tests were deaerated and unstirred 0.47 M KCl aqueous solution for potentiodynamic polarization testing and 0.2 M KOH and 0.1 M KCl solutions for voltammetric analysis. It was found that the DLC:N films could well passivate the underlying substrates though the corrosion resistance of the films decreased with increased nitrogen content in the films. The DLC:N films showed wide potential windows in the KOH solution, in which the detection ability of the DLC:N films to trace lead of about 1 x 10(-3) M Pb(2+) was also tested.  相似文献   

18.
Cr-containing diamond-like carbon (Cr-DLC) films was deposited on silicon wafers by a hybrid beams system, which consists of a DC magnetron sputtering and a linear ion source. The chromium content in the films was adjusted by varying the fraction of Ar in the Ar and CH4 gas mixture. The composition, microstructure, surface morphology, mechanical properties and tribological behavior of the films were investigated by XPS, TEM, AFM, SEM, nano-indentation and tribological tester as a function of Cr content. It is shown that, as the Cr content increased from 1.49 to 40.11 at.%, the Cr-DLC films transfer from amorphous DLC with dispersed metallic-like Cr to composite DLC with carbide phases embedding in the DLC matrix, and the film surface morphology also evolve from flat surface into rough surface with larger hillocks. The amorphous Cr-DLC films exhibit a low friction coefficient and wear rate as pure DLC, while the composite Cr-DLC films show a higher friction coefficient and wear rate, although they possess a relatively high hardness.  相似文献   

19.
利用中频脉冲非平衡磁控溅射技术在不同的基体温度下制备了类金刚石(DLC)薄膜,采用Raman光谱、X射线光电子能谱(XPS)、纳米压痕测试仪、椭偏仪对所制备DLC薄膜的微观结构、机械性能、光学性能进行了分析。Raman光谱和XPS结果表明,当基体温度由50℃增加到100℃时,DLC薄膜中的sp3杂化键的含量随基体温度的升高而增加,当基体温度超过100℃时,DLC薄膜中的sp3杂化键的含量随基体温度的升高而减少。纳米压痕测试表明,DLC薄膜的纳米硬度随基体温度的增加先增加而后减小,基体温度为100℃时制备的薄膜的纳米硬度最大。椭偏仪测试表明,类金刚石薄膜的折射率同样随基体温度的增加先增加而后减小,基体温度为100℃时制备的薄膜的折射率最大。以上结果说明基体温度对DLC薄膜中的sp3杂化键的含量有很大的影响,DLC薄膜的纳米硬度、折射率随薄膜中的sp3杂化键的含量的变化而变化。  相似文献   

20.
Sk.F. Ahmed  D. Banerjee 《Vacuum》2010,84(6):837-842
Optical properties of fluorine doped diamond-like carbon (F:DLC) films deposited by the direct current plasma enhanced chemical vapor deposition (PECVD) technique were studied in detail. Surface morphologies of the F:DLC films were studied by an atomic force microscope, which indicated surface roughness increased with increase in at.% of F in the films. The chemical binding was investigated by X-ray photoelectron spectroscopic studies. Fourier transformed infrared spectroscopic studies depicted the presence of CFx (x = 1,2,3) and CHn (n = 1,2) bonding within the F:DLC films. Optical transparency and the optical band gap decreased with the fluorine incorporation in the DLC film. Optical band gap calculated from the transmittance spectra decreased from 2.60 to 1.95 eV with a variation of 0-14.8 at.% of F concentration in the diamond-like carbon films. Urbach parameter determined from the band tail of the transmittance spectra showed that it increased with the doping concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号