首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S.N. Alamri 《Vacuum》2009,83(6):996-1000
This study investigates the impact of high temperature and vacuum on the properties of WO3 powder during electron beam deposition and evaluates the consequential effects on the as-deposited films. Therein, the grain size and the crystallinity of the source were observed to increase and become non-stoichiometric tungsten oxide (WO3−x) due to the high temperature and vacuum during the first deposition. As a result of these changes in the source, the optical band gap, Eg, of the deposited film decreased from 3.11 eV to 3.07 eV, and the absorbance was observed to increase. The coloration efficiencies of the deposited films decreased from 23 to 16 cm2 C−1. WO3-incorporated carbon nanotubes (WO3/CNT) were observed in the source after electron beam deposition if there were some initial carbon impurities in the source prior to deposition.  相似文献   

2.
The n-type tungsten oxide (WO3) polycrystalline thin films have been prepared at an optimized substrate temperature of 250 °C by spray pyrolysis technique. Precursor solution of ammonium tungstate ((NH4)2WO4) was sprayed onto the well cleaned, pre-heated fluorine doped tin oxide coated (FTO) and glass substrates with a spray rate of 15 ml/min. The structural, surface morphological and optical properties of the as-deposited WO3 thin films were studied. Mott-Schottky (M-S) studies of WO3/FTO electrodes were conducted in Na2SO4 solution to identify their nature and extract semiconductor parameters. The electrochromic properties of the as-deposited and lithiated WO3/FTO thin films were analyzed by employing them as working electrodes in three electrode electrochemical cell using an electrolyte containing LiClO4 in propylene carbonate (PC) solution.  相似文献   

3.
Nanostructured tungsten (W) and tungsten trioxide (WO3) films were prepared by glancing angle deposition using pulsed direct current magnetron sputtering at room temperature with continuous substrate rotation. The chemical compositions of the nanostructured films were characterized by X-ray photoelectron spectroscopy, and the film structures and morphologies were investigated using X-ray diffraction and high resolution scanning electron microscopy. Both as-deposited and air annealed tungsten trioxide films exhibit nanostructured morphologies with an extremely high surface area, which may potentially increase the sensitivity of chemiresistive WO3 gas sensors. Metallic W nanorods formed by sputtering in a pure Ar plasma at room temperature crystallized into a predominantly simple cubic β-phase with <100> texture although evidence was found for other random grain orientations near the film/substrate interface. Subsequent annealing at 500 °C in air transformed the nanorods into polycrystalline triclinic/monoclinic WO3 structure and the nanorod morphology was retained. Substoichiometric WO3 films grown in an Ar/O2 plasma at room temperature had an amorphous structure and also exhibited nanorod morphology. Post-deposition annealing at 500 °C in air induced crystallization to a polycrystalline triclinic/monoclinic WO3 phase and also caused a morphological change from nanorods into a nanoporous network.  相似文献   

4.
Tungsten oxide hydrate nanowire netted-spheres were successfully synthesized in the glycol solution using a facile solvothermal approach. The nanowires with uniform diameter of 4-6 nm are actually a kind of tungsten oxide hydrate/surfactant hybrid materials. The influence of surfactant, solvent, time and temperature on tailoring morphology was investigated in detail. The possible formation process of WO3 hydrate nanowire netted-sphere was proposed. Sensing properties of such WO3 hydrate sensor show that the desirable sensing characteristics towards 100 ppm ammonia gas at 320 °C were obtained, such as rapid response (18.3 s), high sensitivity, good reproducibility and stability.  相似文献   

5.
Tungsten oxide films have been successfully fabricated from tungsten oxychloride (WOCl4) precursor by using plasma enhanced vapor deposition (PECVD) technique. The films were deposited onto silicon substrates and ceramic tubes maintained at 100°C under a constant operating pressure of He-O2 gas mixtures. The compositions and the structures of the thin films have been investigated by means of anaysis methods, such as XRD, XPS, UV and IR. The as-deposited WO3 thin films were amorphous state and became crystalline after annealing above 400°C. The surface analysis of the films indicates that stoichiometry O/W is 2.77 : 1. The gas sensing measurements of the WO3 thin film sensors indicate that these sensors have a high sensitivity, excellent selectivity and quick response behavior to NO2.  相似文献   

6.
《Thin solid films》2002,402(1-2):126-130
Thin films of tungsten oxide were grown by organometallic chemical vapor deposition (OMCVD) using tetra(allyl)tungsten, W(η3-C3H5)4. X-Ray diffraction (XRD) analyses showed amorphous films at substrate temperatures (Ts) <350°C and polycrystalline films at Ts>350°C. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed grain sizes in the range 20–40 nm. In situ electrochemical reduction of WO3.2/ITO (2.0 M HCl) produced a faint blue color in less than 1 s. The maximum coloration efficiency (CE) was found to be 22 cm2/mC at 630 nm. The density of the films decreases from 4.53 to 4.29 g/cm3 after annealing. An optical bandgap (Eg) of ∼3.2 eV was estimated for both as-deposited and annealed films.  相似文献   

7.
Thin films of molybdenum doped indium oxide (IMO) were deposited on glass at room temperature using an in-built three-source RF magnetron sputtering. The films were studied as a function of oxygen volume percentage (O2 vol. %; ranging from 0.0 to 17.5%) in the sputtering chamber. The as-deposited amorphous films were crystallized on post-annealing. The as-deposited films are low conducting and Hall coefficients were undetectable; whereas post-annealed films possess fairly high conductivity. The lowest transmittance (11.96% at 600 nm) observed from the films deposited without oxygen increased to a maximum of 88.01% (3.5 O2 vol. %); whereas this transmittance was decreased with the increasing O2 vol. % to as low as 81.04% (15.6 O2 vol. %); a maximum of 89.80% was obtained from the films annealed at 500 °C in open air (3.5 O2 vol. %). The optical band gap of 3.80 eV obtained from the films deposited without oxygen increased with increasing O2 vol. % to as high as 3.91 eV (17.5 O2 vol. %). A maximum of 3.92 eV was obtained from the films annealed at 300 °C in N2:H2 gas atmosphere (17.5 O2 vol. %).  相似文献   

8.
Substoichiometric tungsten oxide films (WO3 − y, 0.49 ≥ y ≥ 0.15) were prepared by non-reactive thermal evaporation of WO3 powder in vacuum. The thin film composition, structure and optical properties were investigated with the purpose to establish their dependence on the deposition conditions and to prove a possible correlation between electrochromic and gasochromic colouration. An analogy in the dependencies of the maximum achievable optical density on the thin film oxygen content for gasochromically and electrochromically coloured films was observed.In-situ performed XPS measurements suggested that the main mechanism of gasochromic colouration is charge transfer between W6+ and W5+ states, i.e., similar to the electrochromic effect.  相似文献   

9.
Substoichiometric tungsten oxide films were deposited on Si substrates by heating metallic filaments at temperatures of 920, 1020 and 1070 K at a total pressure of 133 Pa and H2 partial pressure of 13.3 Pa at or near room temperature. Due to their substoichiometry and deposition method samples were named hot-wire WOx (hwWOx) films (x < 3). No optical gap was identified by optical (spectroscopic ellipsometry) measurements made on hwWOx films and resistivity was found to increase with temperature. This metallic character of hwWOx films was attributed to substoichiometry, which causes the creation of electronic states within the band gap and shifts the Fermi level in the conduction band. The growth of hwWOx films occurred from substoichiometric WOx vapors produced in two steps: a) by the H2 reduction of the superficial (native) oxide of the heated tungsten filament to WOx and b) evaporation of the last. Vapors were composed of WOx particles with dimensions of 5-6 nm or clusters of such particles and condensing on the cold substrate form hwWOx films. The substoichiometry of hwWOx samples was related to the presence of many unsaturated bonds in them, which re-constructed easily upon thermal annealing above 420 K or even after exposure to the electron beam of the transmission electron microscope leading to the formation of crystallites with dimensions of 5 nm within samples.  相似文献   

10.
R. Azimirad  O. Akhavan 《Vacuum》2008,82(8):821-826
A simple method for synthesis of NaxWO3 nanowhiskers on tungsten thin films with 40 nm thickness sputtered on soda lime substrate as a source of sodium atoms has been reported for the first time. After heat treatment of the W thin films at 650 °C in N2 ambient for different times (15, 80 and 180 min), crystalline NaxWO3 nanowhiskers with [0 0 1] direction were obtained. scanning electron microscopy (SEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS) and optical transmission/reflection measurements were employed to determine various properties of the grown nanowhiskers. Experimental results revealed that size and density of nanowhiskers were dependent on the annealing time and found that the 80-min heat treatment was a proper time for the growth of sodium-doped tungsten oxide nanowhiskers, in our experimental conditions. According to SEM observations, the synthesized nanowhiskers have 70-300 nm in width and 1-10 μm in length. It was also observed that by increasing the heating time to 180 min resulted in diffusion of the nanowhiskers into the substrate.  相似文献   

11.
In2O3 thin films were prepared by the thermal oxidation of amorphous InSe films in air atmosphere. The structure, morphology and composition of the thermal annealed products were characterized by X-ray diffraction (XRD), scanning electron microscopy and energy-dispersive spectroscopy, respectively. The XRD patterns indicate that the as-deposited InSe films were amorphous and they fully transformed into polycrystalline In2O3 films with a cubic crystal structure in the preferential (222) orientation at a temperature around 600 °C. The optical energy gap of 3.66 eV was determined at room temperature by transmittance and reflectance measurements using UV-vis-NIR spectroscopy. A preliminary characterization shows that these films have a promising response towards NO2 gas at a working temperature around 180 °C.  相似文献   

12.
Platinum-activated tungsten oxide (Pt-WO3) films are prepared for hydrogen (H2) sensing applications. In this study, WO3 films were fabricated by reactive magnetron sputtering and Pt clusters were deposited on them by dip-coating. The microstructure, chemical composition and phase structure of Pt-WO3 films were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction, respectively. It was observed that a reconditioning period is required after a rest period of the sensor for obtaining a stable signal. A thermal treatment at 450 °C for 24 h is proposed to solve this problem.  相似文献   

13.
TiO2–WO3 thin films were prepared by radio frequency (r.f.) reactive sputtering from metallic target. Structural and morphological properties of the thin films have been studied through X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The influence of the annealing on the phase composition TiO2–WO3 system was studied. The binding energies of titanium and tungsten are characteristic for Ti4+ and W6+. The influence of tungsten on anatase–rutile phase transition in TiO2 was observed. The structural modeling has been performed to account the preferred orientation in tungsten doped titanium oxide.  相似文献   

14.
Antimony films of thicknesses of 25, 40 and 80 nm deposited using thermal evaporation technique were annealed at 200 °C for 6 h. Programmed iodization was carried out at room temperature for periods ranging from 5 min to 9 h on both as-deposited and annealed films. X-ray diffraction studies on iodized films reveal that antimony tri-iodide nanoparticles grow only on annealed antimony films. Surface morphology as revealed through SEM consists of antimony and antimony tri-iodide nanoparticles are 25 nm and 1 μm, respectively. Optical absorption of Sb and SbI3 nanoparticles carried out at room temperature. As-deposited antimony film of thickness 25 nm exhibits a sharp rise in the absorption near ultraviolet region while post-deposition annealed films were characterized by red shifted absorption. Interestingly 45 nm thick Sb films exhibit a broad volume plasmon resonance peak around 500 nm with a width of 200 nm. Progressive iodization of 25 nm thick film reveals two absorption bands at 381.7 nm (A2) and 458.3 nm (B3) with photon energies 3.25 and 2.70 eV, respectively, due to the development of SbI3 valence band structure. Last members of hydrogen-like series of absorption levels A2 and B3 due to halogen doublet (3/2, 1/2) splitting have been observed at room temperature.  相似文献   

15.
We have investigated the electrochromic properties of amorphous granular tungsten oxide (WO3 + δ) thin films with over-stoichiometric oxygen content (δ), using LiClO4 with propylene carbonate as an electrolyte. Different optical and electrochromic characteristics are observed with increasing δ. All the devices are electrochemically stable for more than 5000 color/bleach cycles without apparent degradation, and they have a faster response to coloration than to bleaching. WO3 + δ films with an optimized δ value show an optical modulation of 86% at a wavelength of 630 nm and the highest coloration efficiency ever reported of ~ 213 cm2/C. The δ-dependent coloration mechanism is discussed using the site saturation model. It is proposed that WO3 + δ films with the optimal δ value have favorable thickness and stoichiometry for the generation of Li+W+5 states.  相似文献   

16.
Ultrathin films (5 nm, 10 nm and 20 nm effective thickness) of WO3 have been deposited in high vacuum (10− 6 Torr) onto single crystal Si(100) substrates and studied with X-ray diffraction, atomic force microscopy, scanning tunneling microscopy and spectroscopy. The experiments have been carried out on “as-deposited” thin films or after 1 h post-deposition annealing at various temperatures (ranging from 300 °C to 500 °C). A size induced increase of the amorphous to crystalline (monoclinic) phase transition has been observed for the 5 nm and 10 nm films, with a critical crystallite size of 25 ± 5 nm and a critical temperature of 345 ± 5 °C. All the experimental evidences show that, upon annealing, there is a diffusion limited aggregation growth of WO3 that forms large flat two-dimensional islands composed by aggregates of individual crystallites approximately uniform in size and shape. These islands are isolated in the 5 nm thin films, are connected in the 10 nm case and form a uniform patchwork in the 20 nm thin films. Scanning tunneling spectroscopy shows the opening of a large surface band gap (2.7 eV) in the 500 °C annealed films and the significant presence of in gap states for thin films prepared with a lower (below 400 °C) annealing temperature. These findings are discussed in view of the optimization of the best morphological, structural and electronic parameters to fabricate WO3 gas sensing devices at the sub-micrometer length scale.  相似文献   

17.
Nitrogen incorporated tungsten oxide (WO3) films were grown by reactive magnetron sputter-deposition by varying the nitrogen content in the reactive gas mixture keeping the deposition temperature fixed at 400 °C. The crystal structure, surface morphology, chemical composition, and electrical resistivity of nitrogen doped WO3 films were evaluated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and electrical conductivity measurements. The results indicate that the nitrogen-incorporation induced changes in the microstructure and electrical properties of WO3 films are significant. XRD measurements coupled with SEM analysis indicate that the increasing nitrogen content decreases the grain size and crystal quality. The nitrogen concentration increases from 0 at.% to 1.35 at.% with increasing nitrogen flow rate from 0 to 20 sccm. The corresponding dc electrical conductivity of the films had shown a decreasing trend with increasing nitrogen content.  相似文献   

18.
The electrochromic (EC) properties of tungsten oxide (WO3), such as coloration efficiency, cyclic durability and reversibility strongly depend on the structural and morphological properties, which are influenced by the deposition method and parameters.This paper presents the steps for optimizing the deposition parameters (substrate temperature, air flow pressure and precursor solution molarity) for improving the optical and electrical properties of WO3 thin films for EC applications. WO3 thin films were deposited by spray pyrolysis using tungsten hexachloride (WCl6) dissolved in ethanol as precursor solution. The EC properties of optimized films were tested in two different electrolytes (H2SO4 1 M and acetic acid/sodium acetate buffer with pH = 4) and changes in structure, composition and morphology of the films after coloration/bleaching cycles were discussed.The deposition temperature, carrier gas pressure and solution molarity were optimized at 250 °C, 120 kPa and 0.14 M respectively. Under these condition a dense, uniform film, with homogenous distribution of particles, good adhesion to the substrate, low roughness (9.02 nm), high transparency (> 70% in the 500-1100 nm range) and conductivity was obtained. Transmission modulation is higher for the sample cycled in H2SO4 1 M (64% at 630 nm) compared to that cycled in the buffer (21% at 630 nm), whereas opposite results were obtained for coloration efficiencies 28 cm2 C− 1 (at 630 nm) and 35 cm2 C− 1 (at 630 nm), respectively. Changes in surface chemistry and morphology of the optimized sample were observed after cycling in H2SO4.  相似文献   

19.
《Vacuum》2004,75(3):195-205
Amine-containing organic films are deposited onto silicon substrates from mass-selected beams of 5-200 eV Si2NC8H19+ (silazane) and 15-100 eV C3H6N+ (allylamine) ions produced by electron impact ionization of 1,3-divinyltetramethyldisilazane and allylamine. Silazane films are also deposited onto aluminum substrates. These ion-deposited films are analysed directly and/or after air exposure by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Chemical derivatization prior to XPS analysis is utilized to distinguish primary and secondary amine groups in the films from non-amine nitrogen. Primary amines are absent in silazane films. Secondary amine containing films form at low silazane ion energies whereas the higher ion energies lead to formation of more inorganic, silico-carbo-nitride-like films. The ion energy trend is similar for films from allylamine ions, except for the fact that both primary and secondary amines are detected. The primary amines from allylamine ions survive film ageing in air for periods of several days. Ion-induced film-substrate reactions are observed for silazane films.  相似文献   

20.
We present the synthesis of tungsten oxide (WO3−x) thin films consisting of layers of varying oxygen content. Configurations of layered thin films comprised of W, W/WO3−x, WO3/W and WO3/W/WO3−x are obtained in a single continuous hot-wire chemical vapor deposition process using only ambient air and hydrogen. The air oxidizes resistively heated tungsten filaments and produces the tungsten oxide species, which deposit on a substrate and are subsequently reduced by the hydrogen. The reduction of tungsten oxides to oxides of lower oxygen content (suboxides) depends on the local water vapor pressure and temperature. In this work, the substrate temperature is either below 250 °C or is kept at 750 °C. A number of films are synthesized using a combined air/hydrogen flow at various total process pressures. Rutherford backscattering spectrometry is employed to measure the number of tungsten and oxygen atoms deposited, revealing the average atomic compositions and the oxygen profiles of the films. High-resolution scanning electron microscopy is performed to measure the physical thicknesses and display the internal morphologies of the films. The chemical structure and crystallinity are investigated with Raman spectroscopy and X-ray diffraction, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号