首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NOx storage and reduction (NSR) catalysts Pt/K/TiO2–ZrO2 were prepared by an impregnation method. The techniques of XRD, NH3-TPD, CO2-TPD, H2-TPR and in situDRIFTS were employed to investigate their NOx storage behavior and sulfur-resisting performance. It is revealed that the storage capacity and sulfur-resisting ability of these catalysts depend strongly on the calcination temperature of the support. The catalyst with theist support calcined at 500 °C, exhibits the largest specific surface area but the lowest storage capacity. With increasing calcination temperature, the NOx storage capacity of the catalyst improves greatly, but the sulfur-resisting ability of the catalyst decreases. In situ DRIFTS results show that free nitrate species and bulk sulfates are the main storage and sulfation species, respectively, for all the catalysts studied. The CO2-TPD results indicate that the decomposition performance of K2CO3 is largely determined by the surface property of the TiO2–ZrO2 support. The interaction between the surface hydroxyl of the support and K2CO3 promotes the decomposition of K2CO3 to form –OK groups bound to the support, leading to low NOx storage capacity but high sulfur-resisting ability, while the interaction between the highly dispersed K2CO3 species and Lewis acid sites gives rise to high NOx storage capacity but decreased sulfur-resisting ability. The optimal calcination temperature of TiO2–ZrO2 support is 650 °C.  相似文献   

2.
In situ FT-IR spectroscopy coupled with mass spectrometry have been used to study the mechanism of nitrates formation and reduction over a common Pt–Rh/Ba/Al2O3 NO x storage catalyst, compared with a different alumina-based compound.The experimental device used consists of a transmission reactor cell (having a very small dead volume) dedicated to the evolution of surface species, and of a mass spectrometer combined with a FT-IR micro-cell for gas analysis, allowing time resolved analysis in stationary and transient conditions.At the first time the nitration properties of the catalysts under a lean flow have been studied in the appropriate temperature window (473–673 K). The dynamics of nitrates formation has been pointed out, as well as the different coordination sites on the compounds surface. Then the catalysts have been alternatively exposed to rich and lean flows very close to the real exhaust composition. This has allowed the identification of reduction pathway, active sites, intermediate species and by-products for NO X -trap reaction. In particular, we have differentiated the role of the support and of the noble metal in the mechanism, as well as of isocyanate adspecies and ammonia among the detected species. The very high NO X storage properties and the selectivity (near 100%) in nitrogen of the newly designed catalyst have been pointed out.  相似文献   

3.
The objective of this work is the study of fundamental common aspects of NOx catalytic reduction over a Co/Pd-HFER zeolite catalyst, using methanol or methane as reducing agent. Temperature Programmed Surface Reaction (TPSR) studies were performed with reactant mixtures comprising NO2 and one of the reducing agents.The formation of formaldehyde was detected in both studied reactions (NO2–CH4 and NO2–CH3OH) in the temperature range between 100 and 220 °C. At higher temperature, when the NOx reduction process effectively begins, formaldehyde starts to be consumed.Using methanol as reducing agent, nitromethane and nitrosomethane, are detected. At 300 °C these species are consumed and cyanides and iso-cyanides formation occurs. On the contrary, with methane, these last species were not detected; however, there are strong evidences for CH3NO and CH3NO2 formation.Thus, using methanol or methane, similar phenomena were detected. In both cases, common intermediary species seem to play an important role in the NOx reduction process to N2.These results suggest that methanol can be considered as a reaction intermediate species in the mechanism of the reduction of NO2 with methane, over cobalt/palladium-based ferrierite catalysts.  相似文献   

4.
In situ and time-resolved DRIFT methods were used to monitor the change in NO x adspecies on Pt(1%)–TiO2 and Rh(1%)–TiO2 catalysts during interaction with propene with the aim to determine whether or not propene chemisorption and interaction with the catalyst induces a change in the nature of the NO x adspecies prior to their reduction. The nature of NO x adspecies produced by interaction of the NO + O2/He feed with the catalyst is different on Pt- and Rh–TiO2 (in the Pt–TiO2 catalyst the IR more intense adspecies are nitrate, while in the Rh–TiO2 catalyst nitrosyl species are the IR more intense), but modification of the nature of the adspecies prior to their conversion is observed in both cases. The interpretation of the data provides indication about the nature of the reactive NO x species and the presence of multiple pathways in the mechanism of their conversion.  相似文献   

5.
Arena  G.E.  Bianchini  A.  Centi  G.  Vazzana  F. 《Topics in Catalysis》2001,16(1-4):157-164
The transient reactivity and surface phenomena of storage and conversion of NO x species on Pt(1%)–Me/Al2O3 catalysts, where Me = Ba, Ce and Cu, were studied by the RWF (rectangular wavefront) method. The Me component has a relevant influence on the processes of surface storage and transformation. The reduction of NO x by propene in the presence of oxygen is promoted by adding Cu to a Pt/Al2O3 catalyst, while cerium promotes transient conversion of NO in the absence of propene, but inhibits the reduction of NO x in the presence of propene. Copper is suggested to be a promising element to add together with Ba for new NO x storage-reduction catalysts due to its capacity to act both as a storage element and as promoter for NO x reduction.  相似文献   

6.
Ammonium nitrate is thermally stable below 250 °C and could potentially deactivate low temperature NOx reduction catalysts by blocking active sites. It is shown that NO reduces neat NH4NO3 above its 170 °C melting point, while acidic solids catalyze this reaction even at temperatures below 100 °C. NO2, a product of the reduction, can dimerize and then dissociate in molten NH4NO3 to NO+ + NO3, and may be stabilized within the melt as either an adduct or as HNO2 formed from the hydrolysis of NO+ or N2O4. The other product of reduction, NH4NO2, readily decomposes at ≤100 °C to N2 and H2O, the desired end products of DeNOx catalysis. A mechanism for the acid catalyzed reduction of NH4NO3 by NO is proposed, with HNO3 as an intermediate. These findings indicate that the use of acidic catalysts or promoters in DeNOx systems could help mitigate catalyst deactivation at low operating temperatures (<150 °C).  相似文献   

7.
The NO x storage and reduction approach was applied on a full-scale engine rig under stationary operation. NO x reduction experiments were performed and a catalyst model developed and tested. The exhaust system was equipped with a bypass system. A NO x reduction of 25–53% was achieved. At low temperature, higher values were reached when the exhaust gas bypass was longer than the injection period.  相似文献   

8.
Several zeolite-based catalysts containing Ce3+ and/or CeO2 were prepared by a variety of catalyst preparation techniques like ion exchange, solid-state ion exchange, impregnation and physical mixing and are characterised. Selective catalytic reduction was evaluated using simulated exhaust gas containing NO x , NH3, O2 and H2O at high space velocities (>180000 h–1) in the temperature window 150–600 °C. The activity and selectivity in NO x reduction was found to strongly depend on the charge compensating ions, crystallite size of the zeolite and CeO2 content in the catalyst. CeO2 mixed with zeolite having H+ or Ce3+ co-cations showed benificial effect and increased the NO x conversion and selectivity. Among the different zeolite materials studied, the structure and the strength and amount of Brønsted acidity did not influence the NO x conversion.  相似文献   

9.
The effects of adding iron to Pd–Pt/sulfated zirconia (SZ) on the selective NO x reduction by methane were examined based on durability tests under conditions simulating natural gas combustion exhaust. While Pd–Pt/SZ was severely deactivated at 500 °C, Pd–Pt/Fe-SZ maintained a NO x conversion higher than 70% for over 2400 h under the same conditions. Methane conversion on Pd–Pt/Fe-SZ was significantly lower than that on Pd–Pt/SZ. XRD analysis of fresh and used catalysts showed that a part of the SZ had transformed to monoclinic ZrO2 and that adding Fe suppressed the transformation. These results suggested that the improvement in NO x conversion by adding Fe was due to the suppression of methane combustion and the stabilization of SZ against transformation to ZrO2.  相似文献   

10.
The effect of the addition of hydrogen on the SCR of NO x with a hydrocarbon reaction was investigated. It was found that hydrogen had a remarkable effect on the temperature range over which NO x could be reduced during the SCR reaction with octane. Reduction of NO x was initiated at as low a temperature as 100 °C and >95% NO x conversion was achieved over a temperature range of 200–450 °C. Hydrogen has the effect of activating octane at lower temperatures and also promotes the oxidation of NO to NO2 in the absence of hydrocarbon. Transient kinetic and in situ DRIFTS measurements indicated that hydrogen has a direct role in the reaction mechanism by either promoting the formation and storage of an organic C = N species which can then readily reduce NO x and/or removing a species which acts as a poison to the SCR reaction at low temperatures.  相似文献   

11.
Simulation of SCR equipped vehicles using iron-zeolite catalysts   总被引:1,自引:0,他引:1  
Iron-catalysts, based on ZSM-5 (FeZSM5) and Cuban natural Mordenite (FeMORD) zeolites have been prepared by a conventional ion-exchange method and their catalytic activity in the selective catalytic reduction (SCR) of NO with ammonia was studied in the presence of H2O and SO2. A commercial SCR catalyst (CATCO) based on V2O5–WO3–TiO2, was also studied as a reference. This paper presents the experimental results of using these catalysts without toxic vanadium and also exploits a neural network-based approach to predict NOx conversion efficiency of three SCR catalysts. The mathematical functions derived have been integrated into a numerical model to simulate diesel road vehicles equipped with SCR catalysts such as those studied here. The main results indicate that despite toxic vanadium and N2O formation, CATCO shows better NOx conversion efficiencies. However, FeMORD does not produce N2O and performs better than the FeZSM5. The simulation results on real cycles show lower level of NOx for heavy-duty and light-duty diesel vehicles compared with homologation load cycles.  相似文献   

12.
The NO x storage performance at low temperature (100–200 °C) has been studied for model NO x storage catalysts. The catalysts were prepared by sequentially depositing support, metal oxide and platinum on ceramic monoliths. The support material consisted of acidic aluminium silicate, alumina or basic aluminium magnesium oxide, and the added metal oxide was either ceria or barium oxide. The NO x conversion was evaluated under net-oxidising conditions with transients between lean and rich gas composition and the NO x storage performance was studied by isothermal adsorption of NO2 followed by temperature programmed desorption of adsorbed species. The maximum in NO x storage capacity was observed at 100 °C for all samples studied. The Pt/BaO/Al2O3 catalyst stored about twice the amount of NO x compared with the Pt/Al2O3 and Pt/CeO2/Al2O3 samples. The storage capacity increased with increasing basicity of the support material, i.e. Pt/Al2O3·SiO2 < Pt/Al2O3 < Pt/Al2O3 · MgO. Water did not significantly affect the NO x storage performance for Pt/Al2O3 or Pt/BaO/Al2O3.  相似文献   

13.
In this work we report results of NOx adsorption and diesel soot combustion on a noble metal promoted K/La2O3 catalyst. The fresh-unpromoted solid is a complex mixture of hydroxide and carbonate compounds, but the addition of Rh favors the preferential formation of lanthanum oxycarbonate during the calcination step. K/La2O3 adsorbs NOx through the formation of La and K nitrate species when the solid is treated in NO + O2 between 70 and 490 °C. Nitrates are stable in the same temperature range under helium flow. However, they become unstable at ca. 360 °C when either Rh and/or Pt are present, the effect of Rh being more pronounced. Nitrates decompose under different atmospheres: NO + O2, He and H2. The effect of Rh might be to form a thermally unstable complex (Rh–NO+) which takes part both in the formation of the nitrates when the catalyst is exposed to NOx and in the nitrates decomposition at higher temperatures. Regarding soot combustion, nitrates react with soot with a temperature of maximun reaction rate of ca. 370 °C, under tight contact conditions. This temperature is not affected by the presence of Rh, which indicates that the stability of nitrates has little effect on their reaction with soot.  相似文献   

14.
MnOx–CeO2 mixed oxide catalysts prepared by sol–gel method were tested for the catalytic combustion of chlorobenzene (CB), as a model of chlorinated aromatic volatile organic compounds (CVOCs). MnOx–CeO2 catalysts with the different ratio of Mn/Ce + Mn were found to possess high catalytic activity for catalytic combustion of CB, and MnOx(0.86)–CeO2 was the most active catalyst, on which the complete combustion temperature (T90%) of chlorobenzene was 236 °C. The stability of MnOx–CeO2 catalysts in the CB combustion was investigated. MnOx–CeO2 catalysts with high Mn/Ce + Mn ratios present high stable activity, which is related to their high ability to remove Cl species adsorbed and a large amount of active surface oxygen.  相似文献   

15.
NO x reduction activity on Pt and Pd catalysts had a maximum for S value as stoichiometry number at a fixed temperature, and the S value at the maximum NO x conversion increased with decreasing temperature. NO x conversion on Rh catalyst increased with decreasing S value, but independent of temperature. As for the effect of HC on NO x reduction behavior, it was concluded that, for Pt and Pd catalysts, HC adsorbs strongly on the catalysts surface to cause the self-inhibition. Increasing O2 concentration lead to oxidation of HC, but decreased the value of NO/O2 ratio. The balance point of the two factors generated a maximum NO x conversion. For Rh catalyst, the strongly adsorbed oxygen is more reactive with decreasing S value, and thus NO x conversion is increased.  相似文献   

16.
In a general model of “three-function deNOx” catalyst, the partial oxidation of methane by NO2 is an important step (CH4 + NO2 → CxHyOz + NO). To study the effect of the length and diameter, in the mesopores of SBA-15, we have synthesized catalysts with 3 wt.% cobalt supported on SBA-15, with differences in length and diameter of channels. Three different cobalt species were detected on all catalysts. We demonstrated by TPSR experiments that the activity of cobalt/SBA-15 catalysts is affected by the length, the diameter and connections between mesopores of the SBA-15 supports. We show that by changing textural properties of silica support the temperature of 100% conversion of NO2 into NO can decrease by more than 100 °C.  相似文献   

17.
NO x adsorption was measured with a barium based NOx storage catalyst at an engine bench equipped with a lean burn gasoline direct injection engine (GDI). In order to study the influence of gas phase NO2 on the NOx storage efficiency two different pre-catalysts were used: One with excellent NO oxidation activity to produce a high NO2 concentration and another pre-catalyst without NO oxidation activity and therefore high NO concentration at the NO x storage catalyst inlet. Both pre-catalyst had excellent HC and CO conversion efficiency and therefore the CO and HC concentration at the NO x storage catalyst inlet was practically zero. No lean NO x reduction was observed. Under that conditions, experiments with NO x storage catalysts of different length show that a high NO2 inlet concentration did not enhance the NO x storage efficiency. Moreover, we observed reduction of NO2 to NO over the NOx storage catalyst. However, in presence of a high NO inlet concentration NO2 formation was observed which may proceed parallel to NO x storage.  相似文献   

18.
The NO x storage process over Ba/Al2O3 and Pt–Ba/Al2O3 NSR catalysts has been analyzed in this study by performing experiments at 350 °C with NO2 and NO/O2 mixtures using different complementary techniques (Transient Response Method, in situ FT–IR and DRIFT spectroscopies). The collected data suggest that over the Pt–Ba/Al2O3 catalyst the NO x storage process from NO/O2 mixtures occurs forming at first nitrite species, which progressively evolve to nitrates. In addition, a parallel nitrate formation via disproportionation of NO2 (formed upon NO oxidation) cannot be excluded.  相似文献   

19.
Mixed solid solution spinels impregnated with cerium, Ce/MgO·MgAl2-xMxO4 (M=Fe, V, Cr, x≤0.4), were studied for controlling the SOx emission from the fluid catalytic cracking (FCC) regenerator. An insufficient sulfur release problem inherent to the earlier De---SOx catalyst, Ce/MgO·MgAl2O4, was effectively overcome by incorporating a transition metal into the spinel structure. Studies of the SOx pick-up, temperature profile for the sulfate reduction, the thermal analysis, and the De---SOx cycle test in the batch as well as the automated continuous reactor are discussed to define the role of a transition metal in the mixed spinels for the De---SOx performance. These advanced De---SOx catalysts have led to a commercial success for the simultaneous control of SOx and NOx emissions from the FCC regenerator.  相似文献   

20.
The catalytic activities of ceria–zirconia mixed oxides CexZr1−xO2 (x = 0.17, 0.62 and 0.8) rhodium catalysts were determined by isothermal steady-state experiments using a representative mixture of exhaust gases of coal combustion. Results show that all supports are active in deNOx reaction in the presence of the mentioned gas mixture. However, their catalytic activity varies with the content of cerium and goes through a maximum for x = 0.62, leading to 27% NOx consumption. The effect of rhodium on Ce0.62Zr0.38O2 considerably improves the catalytic activity during the deNOx process assisted by hydrocarbons. The rhodium addition decreases by about 34 °C the temperature of NOx consumption, which goes up to 57%. A mechanism of hydrocarbon (HC) assisted reduction of NO is proposed on ceria–zirconia-supported rhodium catalysts. This mechanism is divided in three catalytic cycles involving (i) the oxidation of NO into NO2, (ii) the reaction of NO2 and the hydrocarbons leading to RNOx species and CxHyOz, and finally (iii) the decomposition of NO assisted by these latter CxHyOz species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号