首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Si3N4/BN fibrous monoliths were prepared with 4 wt% Y2O3 added as a sintering aid to the Si3N4. Residual carbon, present in the billet before hot-pressing, was shown to influence the final microstructure. The sintering aid glass, known to migrate into the BN cell boundaries during hot-pressing, was not sufficient in quantity to prevent premature shear failure when samples were tested in flexure. Increasing the hot-pressing temperature alleviated this problem. For flexure samples tested at 1400°C, fibrous monoliths fabricated with 4 wt% Y2O3 demonstrated linear-elastic loading behavior at a greater stress than fibrous monoliths fabricated with 6-wt%-Y2O3/2-wt%-Al2O3 sintering aids.  相似文献   

2.
The effect of aluminum and yttrium nitrate additives on the densification of monolithic Si3N4 and a Si3N4/SiC composite by pressureless sintering was compared with that of oxide additives. The surfaces of Si3N4 particles milled with aluminum and yttrium nitrates, which were added as methanol solutions, were coated with a different layer containing Al and Y from that of Si3N4 particles milled with oxide additives. Monolithic Si3N4 could be sintered to 94% of theoretical density (TD) at 1500°C with nitrate additives. The sintering temperature was about 100°C lower than the case with oxide additives. After pressureless sintering at 1750°C for 2 h in N2, the bulk density of a Si3N4/20 wt% SiC composite reached 95% TD with nitrate additives.  相似文献   

3.
Long crack R -curve of a porous Si3N4 with aligned fibrous grains was investigated, using a chevron-notched beam technique. A crack was constrained to propagate normal to the grain alignment. The crack growth resistance of aligned porous Si3N4 was much larger compared with that of dense Si3N4 ceramics. Microstructure observations showed that pullouts of fibrous grains in aligned porous Si3N4 markedly increased during crack propagation relative to those of dense Si3N4, due to the existence of pores. The efficient grain pullouts in porous Si3N4 increased the bridging stress at the crack wake.  相似文献   

4.
A W2C-nanoparticle-reinforced Si3N4-matrix composite was fabricated by sintering porous Si3N4 that had been infiltrated with a tungsten solution. During the sintering procedure, nanometer-sized W2C particles grew in situ from the reaction between the tungsten and carbon sources considered to originate mainly from residual binder. The W2C particles resided in the grain-boundary junctions of the Si3N4, had an average diameter of ∼60 nm, and were polyhedral in shape. Because the residual carbon, which normally would obstruct sintering, reacted with the tungsten to form W2C particles in the composite, the sinterability of the Si3N4 was improved, and a W2C–Si3N4 composite with almost full density was obtained. The flexural strength of the W2C–Si3N4 composite was 1212 MPa, ∼34% higher than that of standard sintered Si3N4.  相似文献   

5.
The fracture energies of the tape-cast silicon nitride with and without 3 wt% rod-like β-Si3N4 seed addition were investigated by a chevron-notched-beam technique. The material was doped with Lu2O3–SiO2 as sintering additives for giving rigid grain boundaries and good heat resistance. The seeded and tape-cast silicon nitride has anisotropic microstructure, where the fibrous grains grown from seeds were preferentially aligned parallel to the casting direction. When a stress was applied parallel to the fibrous grain alignment direction, the strength measured at 1500°C was 738 MPa, which was almost the same as room temperature strength 739 MPa. The fracture energy of the tape-cast Si3N4 without seed addition was 109 and 454 J/m2 at room temperature and 1500°C, respectively. On the contrary, the fracture energy of the seeded and tape-cast Si3N4 was 301 and 781 J/m2 at room temperature and 1500°C, respectively, when a stress was applied parallel to the fibrous gain alignment. The large fracture energies were attributable primarily to the unidirectional alignment fibrous Si3N4 grains.  相似文献   

6.
Porous silicon nitride (Si3N4) ceramics with about 50% porosity were fabricated by pressureless sintering of α-Si3N4 powder with 5 wt% sintering additive. Four types of sintering aids were chosen to study their effect on the microstructure and mechanical properties of porous Si3N4 ceramics. XRD analysis proved the complete formation of a single β-Si3N4 phase. Microstructural evolution and mechanical properties were dependent mostly on the type of sintering additive. SEM analysis revealed the resultant porous Si3N4 ceramics as having high aspect ratio, a rod-like microstructure, and a uniform pore structure. The sintered sample with Lu2O3 sintering additive, having a porosity of about 50%, showed a high flexural strength of 188 MPa, a high fracture toughness of 3.1 MPa·m1/2, due to fine β-Si3N4 grains, and some large elongated grains.  相似文献   

7.
A chemical adsorption method in a Si3N4 slurry that contained a nitrate solution was studied during ball milling, with particular interest in increasing the oxide layer in the Si3N4 powder and improving the distribution homogeneity of the sintering additives. The nitrate salts Al(NO3)3·9H2O and Y(NO3)3·6H2O were selected as sintering additives. The following characterization techniques were used: oxygen–nitrogen analysis, X-ray photoelectron spectroscopy, high-resolution electron microscopy (coupled with energy-dispersive X-ray spectroscopy), and X-ray imaging (using wavelength-dispersive X-ray spectroscopy). The thickness of the amorphous layer and the oxygen content of the Si3N4 powder were greater for samples that were milled with nitrate additives, which were heat-treated at 600°C, than those of powders that were milled with oxide additives. The chemical composition of the oxygen-containing layer—that is, the amorphous layer that formed and/or changed on the Si3N4 surface—was similar to Si2N2O in heat-treated Si3N4 powder with nitrate additives, whereas the composition of heat-treated Si3N4 powder with oxide additives was similar to SiO2. Furthermore, a homogeneous distribution of the additives was achieved via the incorporation of aluminum and yttrium into the amorphous layer on the Si3N4 surface. The metal ratio (Y:Al) of the adsorbates was somewhat higher than that of the additives.  相似文献   

8.
A new method for preparing high bending strength porous silicon nitride (Si3N4) ceramics with controlled porosity has been developed by using pressureless sintering techniques and phosphoric acid (H3PO4) as the pore-forming agent. The fabrication process is described in detail and the sintering mechanism of porous ceramics is analyzed by the X-ray diffraction method and thermal analysis. The microstructure and mechanical properties of the porous Si3N4 ceramics are investigated, as a function of the content of H3PO4. The resultant high porous Si3N4 ceramics sintered at 1000°–1200°C show a fine porous structure and a relative high bending strength. The porous structure is caused mainly by the volatilization of the H3PO4 and by the continous reaction of SiP2O7 binder, which could bond on to the Si3N4 grains. Porous Si3N4 ceramics with a porosity of 42%–63%, the bending strength of 50–120 MPa are obtained.  相似文献   

9.
The influence of phase formation on the dielectric properties of silicon nitride (Si3N4) ceramics, which were produced by pressureless sintering with additives in MgO–Al2O3–SiO2 system, was investigated. It seems that the difference in the dielectric properties of Si3N4 ceramics sintered at different temperatures was mainly due to the difference of the relative content of α-Si3N4, β-Si3N4, and the intermediate product (Si2N2O) in the samples. Compared with α-Si3N4 and Si2N2O, β-Si3N4 is believed to be a major factor influencing the dielectric constant. The high-dielectric constant of β-Si3N4 could be attributed to the ionic relaxation polarization.  相似文献   

10.
TiN-coated Si3N4 particles were prepared by depositing TiO2 on the Si3N4 surfaces from Ti(O- i -C3H7)4 solution, the TiO2 being formed by controlled hydrolysis, then subsequently nitrided with NH3 gas. A homogeneous TiO2 coating was achieved by heating a Si3N4 suspension containing 1.0 vol% H2O with the precursor at 40°C. Nitridation successfully produced Si3N4 particles coated with 10–20 nm TiN particles. Spark plasma sintering of these TiN/Si3N4 particles at 1600°C yielded composite ceramics with a relative density of 96% at 25 vol% TiN and an electrical resistivity of 10−3Ω·cm in compositions of 17.5 and 25 vol% TiN/Si3N4, making these ceramics suitable for electric discharge machining.  相似文献   

11.
The influence of ball-milling methods on microstructure and mechanical properties of silicon nitride (Si3N4) ceramics produced by pressureless sintering for a sintering additive from MgO–Al2O3–SiO2 system was investigated. For planetary high-energy ball milling, the mechanical properties of Si3N4 ceramics were evidently improved and a homogeneous microstructure developed. In contrast, some exaggerated elongated grains were developed due to the local enrichment of sintering additives in the specimen prepared by general ball milling. For Si3N4 ceramics produced by planetary ball milling, flexure strength of 1.06 GPa, Vickers hardness of 14.2 GPa, and fracture toughness of 6.6 MPa·m0.5 were achieved. The differences in the mechanical properties of Si3N4 ceramics produced by different processing seem to arise mainly from the changes in microstructural homogenization and sinterability. The planetary high-energy ball-milling process provides a good route to mix starting powders for developing ceramics with uniform microstructure and promising mechanical properties.  相似文献   

12.
Commercially produced pressureless sintered Si3N4, SiC, and SiAlON were characterized with respect to density, phases present, bend strength, and oxidation resistance. The room-temperature bend strengths of sintered Si3N4, SiC, and SiAlON are comparable. However, the room-temperature strengths are much lower (=40 to 50%) than the room-temperature strength of hot–pressed Si3N4 (NC-132). The strength loss in Si3N4 and SiAlON materials at high temperature was attributed to a viscous grain-boundary phase retained during cooling from the sintering temperature. The oxidation resistance of sintered a-SiC was the best of any materials tested.  相似文献   

13.
Sintering additives were incorporated into Si3N4 by attrition and ball milling using both Si3N4 and Al2O3 media. Dispersion of Y2O3 was observed by backscattered electron imaging. Attrition milling for only 15 min using an Si3N4 medium, was equivalent to 24 h of ball milling. Minimal contamination by the Si3N4 was encountered. [Key words: silicon nitride, yttria, comminution, sintering, dispersion.  相似文献   

14.
The optimization of concentrated Si3N4 powder aqueous slurry properties to achieve high packing density slipcast compacts and subsequent high sintered densities was investigated. The influence of pH, sintering aid powder (6% Y2O3, 4% Al2O3), NH4PA dispersant, and Si3N4 oxidative thermal treatment was determined for 32 vol% Si3N4 slurries. The results were then utilized to optimize the dispersion properties of 43 vol% solids Si3N4-sintering aid slurries. Calcination of the Si3N4 powder was observed to result in significantly greater adsorption of NH4PA dispersant and effectively reduced the viscosity of the 32 vol% slurries. Lower viscosities of the optimized dispersion 43 vol% Si3N4-sintering aid slurries resulted in higher slipcast packing density compacts with smaller pore sizes and pore volumes, and corresponding higher sintered densities.  相似文献   

15.
Pressureless sintering of silicon nitride requires addition of sintering agents. The main part of this study was done in order to homogenize the distribution of sintering agents, in this case Y2O3, in a silicon nitride matrix. Colloidal 10-nm Y2O3 Particles were electrostatically adsorbed on Si3N4 particle surfaces. The adsorption was studied by X-ray fluorescence analysis and electrophoretic measurements. Addition of Y2O3 sol to a Si3N4 suspension decreased the viscosity of the suspension. The slip casting properties of Si3N4 suspensions with added Y2O3 sol were examined, and the homogeneity of Y2O3 in the green compacts was compared with conventionally prepared samples. An improved microstructural homogeneity was obtained when Y2O3 sol particles were adsorbed on the Si3N4 particle surfaces.  相似文献   

16.
The long-term high-temperature cyclic oxidation (100 cycles, 104 h, 1500°C) of a Si3N4 material and a Si3N4/MoSi2 composite, both fabricated with Y2O3 as a sintering additive, was studied. Both materials exhibited similar oxidation rates because of surface SiO2 formation described by an almost parabolic law and a total weight gain of 3–4 mg/cm2 after 104 h. As a consequence of oxidation processes in the bulk, microstructural damage was found in the Si3N4 material. These effects were not observed in the composite. The remarkable microstructural stability observed offers the high potential of Si3N4/MoSi2 composites for long-term structural applications at elevated temperatures up to 1500°C.  相似文献   

17.
Advanced sintering techniques for consolidation of Si3N4 powders in the presence of an oxygen-rich liquid phase(s) require high temperatures and usually high nitrogen pressures. A stability diagram is constructed for Si3N4 as a function of the partial pressures of nitrogen (PN2) and silicon (PSi). High PN2 (20 to 100 atm) increases the stability of Si3N4 and the oxygen-rich liquid phase by reducing the PSi and PSi0, respectively. The region of high sinterability is outlined for submicrometer Si3N4 powders containing 7 wt% BeSiN2 and 7 wt% SiO2 as densification aids .  相似文献   

18.
Titanium diboride (TiB2) was hot-pressed at a temperature of 1800°C, and silicon nitride (Si3N4) was added as a sintering aid. The amount of Si3N4 that was added had a significant influence on the sinterability and mechanical properties of the TiB2. When a small amount (2.5 wt%) of Si3N4 was added, the Si3N4 reacted with titania (TiO2) that was present on the surface of the TiB2 powder to form titanium nitride (TiN), boron nitride (BN), and amorphous silica (SiO2). The elimination of TiO2 suppressed the grain growth effectively, which led to an improvement in the densification of TiB2. The formation of SiO2 also was deemed beneficial for densification. The mechanical properties-especially, the flexural strength-were enhanced remarkably through these improvements in the sinterability and microstructure. On the other hand, when a large amount (greaterthan equal to5 wt%) of Si3N4 was added, the mechanical properties were not improved much, presumably because of the extensive formation of a glassy Si-Ti-O-N phase at the grain boundaries.  相似文献   

19.
The microstructures and mechanical properties of continuous porous SiC–Si3N4 composites fabricated by multi-pass extrusion were investigated, depending on the amount of Si powder added. Si powder with different weight percentages (0%, 5%, 10%, 15%, 20%) was added to SiC powder to make raw mixture powders, with 6 wt% Y2O3–2 wt% Al2O3 as sintering additives, carbon (10–15 μm) as a pore-forming agent, ethylene vinyl acetate as a binder, and stearic acid (CH3(CH2)16COOH) as a lubricant. In the continuous porous SiC–Si3N4 composites, Si3N4 whiskers like the hairs of nostrils were frequently observed on the wall of the pores. In this study, the morphology of Si3N4 whiskers was investigated with the nitridation condition and silicon addition content. In composites containing an addition of 10 wt% Si, a large number of Si3N4 whiskers were found at the continuous pore regions. In the sample to which 15 wt% Si powder was added, a maximum value of about 101 MPa bending strength and 57.5% relative density were obtained.  相似文献   

20.
Effect of Silicon Activity on Liquid-Phase Sintering of Nitrogen Ceramics   总被引:1,自引:0,他引:1  
Volatilization resulting from the thermal decomposition of Si3N4 causes the large weight loss and desintering phenomenon observed during pressureless sintering of Si3N4-5% MgO and sialon (z =2)-5% MgO. The addition of a few weight percent of Si to the powder suppresses this volatilazation and helps to achieve fully dense Si3N4 components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号