首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The morphology, crystallography, and nature of precipitates in a quenched and aged Zr-2.5 wt pct Nb alloy has been studied by transmission electron microscopy. The needle-shaped matrix precipitates and equiaxed twin boundary nucleated precipitates produced by aging at 500 °C were the equilibrium Nb-rich β2 phase. On aging at 600 °C, the matrix precipitation was a mixture of β2 needles and coarse metastable Zr-rich β1 particles, while only β1 particles were found at twin boundaries. The growth direction of the needle-shaped particles, 6.6 deg to 8.2 deg from (1-100)h, and their orientation relationship can be predicted by an invariant line strain model. The β1 precipitates have the Burgers orientation relationship. The formation of metastable β1 and stable β2 particles is considered from the free energy approach of Menon, Banerjee, and Krishnan.  相似文献   

2.
The formation of phase bands in in situ diffusion couples of the V-N system was studied by the reaction of vanadium sheet with pure nitrogen within the temperature range 1100 °C to 1700 °C and the nitrogen pressure range 2 to 24 bar. Under these conditions, phase bands of β-V2N and δ-VN1−x develop. The morphology of the β-V2N/α-V(N) interface depends on the saturation state of the α-V(N) core. If the nitrogen content in α-V(N) is high, the interface has a jagged appearance, whereas at low nitrogen contents of the α-V(N) phase, the interface is planar. Electron probe microanalysis (EPMA) was used to measure the diffusion profiles within the couples. The homogeneity regions of the nitride phases were established and the phase diagram accordingly corrected. From the growth rates of the phase bands, the mean composition-independent nitrogen diffusivities in β-V2N and δ-VN1−x were derived. These diffusivities follow an Arrhenius equation with activation energies of 2.92 (β-V2N) and 2.93 eV (δ-VN1−x ). By using δ-VN1−x as a starting material and a low nitrogen pressure during annealing, it could be shown that the direction of nitrogen diffusion can be reversed, i.e., β-V2N is formed on the surface of the couple as a result of out-diffusion of nitrogen.  相似文献   

3.
The formation of phase bands in in situ diffusion couples of the V-N system was studied by the reaction of vanadium sheet with pure nitrogen within the temperature range 1100 °C to 1700 °C and the nitrogen pressure range 2 to 24 bar. Under these conditions, phase bands of β-V2N and δ-VN1−x develop. The morphology of the β-V2N/α-V(N) interface depends on the saturation state of the α-V(N) core. If the nitrogen content in α-V(N) is high, the interface has a jagged appearance, whereas at low nitrogen contents of the α-V(N) phase, the interface is planar. Electron probe microanalysis (EPMA) was used to measure the diffusion profiles within the couples. The homogeneity regions of the nitride phases were established and the phase diagram accordingly corrected. From the growth rates of the phase bands, the mean composition-independent nitrogen diffusivities in β-V2N and β-VN1−x were derived. These diffusivities follow an Arrhenius equation with activation energies of 2.92 (β-V2N) and 2.93 eV (δ-VN1−x ). By using δ-VN1−x as a starting material and a low nitrogen pressure during annealing, it could be shown that the direction of nitrogen diffusion can be reversed, i.e., β-V2N is formed on the surface of the couple as a result of out-diffusion of nitrogen.  相似文献   

4.
The fine scale microstructure of Al-5083 (H-131) sensitized at 448 K (175 °C) for 1, 10, 25, 50, 100, 240, 500, and 1000 hours has been investigated using transmission electron microscopy (TEM) to study the evolution of the β phase (Al3Mg2) at grain boundaries and on pre-existing intragranular particles. In fully sensitized Al-5083, the β phase (Al3Mg2) forms heterogeneously both at grain boundaries and on pre-existing particles, which are enriched in manganese. TEM observations showed that the grain boundary precipitation of the β phase initially occurs between 0 to 1 hour of aging at 448 K (175 °C), and that the β phase grows with a ribbonlike morphology. The grain boundary planes are covered by the β phase after 240 hours of aging. The contribution of microstructure, defects, and environment on the stress corrosion cracking (SCC) behavior is discussed.  相似文献   

5.
Nickel-23 at. pct Si produced by hot extrusion of canned powders is two phase above 1035 °C, consisting of particles of the nickel (silicon) solid solution in a complex silicide matrix, labeled β2 on the phase diagram. Transformation to the Ll2-structured β1-Ni3Si was examined at temperatures from 525 °C to 925 °C by both optical microscopy and transmission electron microscopy. Transformation to β1-Ni3Si was observed to occur by three different processes, namely, by precipitation within the Ni(Si) particles, by the peritectoid transformation Ni(Si) + β2 → β1, and by the eutectoid decomposition of β2, that is, through β2 → β1 + γNi31Si12. All of the transformations are consistent with the phase diagram. The β1 which formed both by precipitation and by the peritectoid transformation is coherent with the Ni(Si) solid solution. The peritectoid transformation appears to be interface controlled (at the coherent β12 interface), as evidenced by the anisotropic fingerlike growth of the β1 into the β2 matrix.  相似文献   

6.
The study focused on the in-situ synthesis of titanium (Ti)-titanium boride (TiB) composites with β phase in the matrix by reaction sintering of TiB2 with Ti and alloying element powders. The goal was to examine the nature of TiB whisker formation in three different kinds of powder mixtures: (1) β-Ti alloy powders and TiB2; (2) α-Ti powder, a master alloy (Fe-Mo) powder containing the β-stabilizing elements, and TiB2; and (3) α-Ti powder, a β-stabilizing elemental powder (Mo or Nb), and TiB2. The effects of powder packing and the relative locations of powder particles on the morphological changes in TiB whisker formation and their growth were studied at processing temperatures ranging from 1100°C to 1300°C. The morphology, size, and distribution of whiskers were found to be influenced by the powder-packing conditions. A large particle-size ratio in bimodally packed mixtures led to the formation of a TiB monolithic layer around β grains. With a relatively finer starting powder, smaller size ratio, and trimodal packing arrangement, the TiB whiskers were found to be distributed more homogeneously in the matrix. The study also used the X-ray direct comparison method and the structure factor for the β phase to determine the volume fraction of TiB phase from X-ray data. Tensile tests and fractographic investigations were carried out on selected composites. The evolution of the composite microstructure, the influence of powder-packing variables, and the morphology and growth of TiB whiskers and their effect on mechanical properties are discussed.  相似文献   

7.
The corrosion of a hot-chamber die-cast AZ91D thin plate (1.4 mm in thickness) was investigated in terms of its microstructure, to elucidate the role of die-chill skin in corrosion. The die-chill skin was composed of a thin layer of chill zone and a thick layer of an interdendritic Al-rich α-Mg/Al12Mg17 β-phase particle/α-Mg grain composite microstructures. The chill zone (4±1 μm in thickness) had fine columnar and equiaxed grains and contained a distribution of submicron Mg-Al-Zn intermetallic particles. Beneath the chill zone, Al12Mg17 β particles were irregularly shaped but did not have an interdendritic network morphology. Furthermore, Al-rich α phase (also known as eutectic α) was in the interdendritic network, which occupied a higher volume fraction than the β phase in the die-skin layer. Corrosion characteristics were studied via constant-immersion and electrochemical tests. Although previous studies have ascribed the fine microstructure to good corrosion resistance for the AZ91D alloy, the present study showed severe corrosion of the sample with a die skin in chloride solution. Moreover, the sample without the die skin on the surface corroded more slowly. The inferior corrosion performance of the die skin was considered to be related to the high volume fraction of the interdendritic network of Al-rich α phase contained in the die skin, owing to the high cooling rate during solidification. The Al-rich α phase does not increase the corrosion resistance of the AZ91D alloy.  相似文献   

8.
To study how changes in solute elements affect precipitation, six Al-Mg-Si alloys aged at 175 °C were investigated by transmission electron microscopy (TEM). In alloys with 1.3 at. pct solute, when the Si/Mg ratio exceeds 5/6, a sharp hardness peak appears after 3 hours that correlates with a high density of fine Guinier-Preston (GP) zones. A second, broader peak correlates with β″ precipitates and U phases. With high Si/Mg ratios, GP zones survive for long aging times. The β″-Mg5Si6 phase becomes very stable in the alloy with its Si/Mg ratio closest to 6/5. Deviation from this ratio increases fractions of β′, U-phases and disordered precipitates. In Mg-rich alloys less GP zones form and the first peak is suppressed. A coarse precipitate microstructure of β″ and β′ develops, the volume fraction being much higher than in Si-rich alloys. The Mg-rich alloys overage faster. Reducing the content of solutes causes alloys with high Si/Mg ratios to have a more Mg-rich behavior.  相似文献   

9.
The fully lamellar microstructure of powder metallurgy Ti-48Al-2W after cooling from the α region to 1280 °C, followed by air cooling and aging at 950 °C for up to 96 hours, is presented. Aging times as short as 5 hours result in acicular-shaped precipitates of W-rich β 0 along lamellar interfaces, with the β 0 size increasing with aging time. The β 0 precipitates nucleate and grow in the α 2 lamellae. Concurrently, with the formation of β 0, the α 2 decomposes into discontinuous lamellae. Aging to precipitate β 0 along lamellar interfaces increases the 760 °C tensile strength (with a slight reduction of ductility) and reduces the instantaneous creep strain, since β 0 precipitates at lamellar interfaces hinder interface dislocation mobility. The deformed microstructures from interrupted creep tests at 140 to 276 MPa at 760 °C indicate that the precipitation of β 0 along interfaces substantially reduces the primary creep strain, primarily due to the influence of β 0 on interface dislocation emission and motion. These results are discussed in terms of the influence of lamellar morphology on the instantaneous creep strain and primary creep transient, and the possible creep mechanisms are highlighted. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee of Mechanical Behavior of Materials.  相似文献   

10.
It is shown on the basis of stereological definitions and a few simple experiments that the commonly used average dispersion parameters, area fraction (A A )β, areal particle densityN and mean free path λα, remain invariant during plastic deformation in the case of nondeforming equiaxed particles. Directional effects on the spacing parametersN and λα arise during uniaxial deformation by rotation and preferred orientation of non-equiaxed particles. Particle arrangement in stringered or layered structures and the effect of deformation on nearest neighbor distances of particles and voids are briefly discussed in relation to strength and fracture theories. Formerly with the Division of Engineering, Brown University, Providence, RI  相似文献   

11.
The interaction of the twinnedβ -1-γ 1 , martensitic interface with various experimentally observed obstacle particles is analyzed using a specific dislocation model for the interface. The strain interaction of particles with simple shears and tetragonal distortions and their modulus interactions are treated as functions of particle crystallographic orientation, particle position with respect to interfacial intersection, and particle size. Differences from previous predictions of a simple general interface model arise primarily from differences in the assumed interfacial trajectory relative to the particles. The finite-particle calculations indicate that the point-particle approximation is valid for a particle radius less than one-tenth the interfacial twin period. Overall agreement with the experimentally measured interfacial mobility behavior is greatly improved over the previous simple model prediction. The measured athermal component of the driving force for interfacial motion is consistent with the strain and modulus interaction with 2H-phase particles. The activation-energy /driving-force relations obtained from the thermally activated component are reasonably represented by the strain interaction with the fine-scale atomic displacements of the tweed structure.  相似文献   

12.
The crystallinity of hydroxyapatite (HAp) and the related calcium phosphates for regenerating hard tissues was controlled by the mechanical grinding (MG) method and subsequent heat treatment. The HAp, carbonate-apatite (CO3Ap), fluorapatite (FAp), and α- and β-tricalcium phosphates (α-TCP and β-TCP, respectively) and tetracalcium diphosphate monoxide (TTCP) were used as initial materials. Variations in crystallinity and crystal structure were examined by the X-ray diffraction (XRD) method during MG and the following heat treatment. The crystallinity, based on crystallite size and crystal elastic strain, decreased with grinding time, and the decreasing rate depended on the type of calcium phosphate; crystallographic diffraction peaks disappeared more rapidly in CO3Ap than in FAp. The change in the morphology of powder during MG was influenced by the primary particle size of the first-stage product; α-TCP, β-TCP, and TTCP powders composed of large particles were predominantly shattered into small pieces and then gathered during MG, while the crystal strain in the HAp, CO3Ap, and FAp powders was mainly accumulated without significant refinement of crystallite size. The thermal-recovery process of crystallinity and crystal structure in the milled powders was investigated. The crystallinity of HAp, CO3Ap, and FAp powders recovered depended on annealing temperature. The novel phase of β’-TCP with higher ordering than β-TCP appeared during heat treatment from the amorphous state of α-TCP or β-TCP obtained during MG. The MG and subsequent heat treatment were, finally, concluded to be an effective process for controlling the crystallinity and changing crystal structure in calcium phosphate powders.  相似文献   

13.
The development of the microstructure on aging of an (α + β) type titanium alloy containing 6A1-1.6Zr-3.3Mo-0.3Si (VT9) (in weight percent) has been studied. The β-transus temperature of this alloy is approximately 1243 K. Solution treatment in the β-phase field of the alloy followed by quenching in water at room temperature resulted in the formation of a single-phase martensite struc-ture. The martensitic structure was confirmed to be orthorhombic (α″) using X-ray diffraction. The water-quenched (WQ) specimens were subjected to aging treatments at temperatures of 823, 873, and 973 K for various lengths of time. Aging at 823 K for times between 24 and 100 hours did not bring about any noticeable change in the microstructure. Aging at 823 K for 200 and 300 hours resulted in the heterogeneous precipitation ofs 2 silicide particles and thin films of β sandwiched between the interplatelet boundaries of martensite. Electron diffraction analysis confirms that the crystal structure of silicide particles is hexagonal with lattice parameters α= 0.70(1) nm andc = 0.36(8) nm. Aging at 873 K for 12 and 24 hours resulted only in the precipitation ofs 2 silicide particles, while aging at the same temperatures for longer times (48, 100, and 200 hours) and also at 973 K for 6 to 100 hours resulted in the precipitation of silicides and also thin films of β and acicular martensite. The relative sizes of silicide precipitates and width of thin films of β phase increase with increasing aging time. The sites for silicide precipitation are mainly at α′-α′ boundaries, α interfaces, and sometimes within regions of transformed β. The kinetics ofs 2 silicide precipi-tation in this alloy is faster than in commercial near-α titanium alloys. This is attributed to the presence of Mo, a strong β stabilizer. Formerly Reader, Department of Metallurgical Engineering, Centre of Advanced Study, Institute of Technology, Banaras Hindu University, Varanasi-221 005, India  相似文献   

14.
The mechanical properties of Ti-7 Mo-7 Al and Ti-7 Mo-16 Al (in at. pct) were correlated to the microstructure. The mechanical properties of the alloy with low aluminum content, consisting of α+ β phases, were dependent on the size of the α particles. Although the α phase is softer than the β phase, the small α particles, upon plastic deformation of the alloy, functioned as typical hard agents in a dispersion-hardened system and the volume fraction of the particles controlled the macroscopic ductility. A rapid strain-hardening behavior of the small α particles seemed to be responsible for this effect. Large α particles behaved like soft, incoherent particles, the volume fraction having little effect on the inherent ductility of the alloy. The two phase (β+ Ti3Al) microstructure of the alloy with high aluminum content resulting from high temperature aging to 900°C exhibited a yield stress of 130 ksi and an elongation to fracture of 5 pct. The ductility of this microstructure was controlled by the volume fraction of the Ti3Al particles inducing homogeneous slip. The favorable ductility properties of the microstructures with low Ti3Al volume fraction were lost if the slip mode was changed from homogeneous slip to planar slip. Formerly Staff Member, Materials Research Center, Allied Chemical Corp., Morristown, N. J.  相似文献   

15.
The decomposition of the bcc β-phase by both athermal and isothermal processes has been investigated in Hf-rich Hf-Nb alloys. An all β-phase structure is retained in chillcast alloys containing 30 to 50 at \ pct Nb (Cb), although electron diffraction streaking effects and the behavior of the temperature coefficient of electrical resistivity indicate the presence of a bcc lattice instability similar to that reported in solute lean Ti and Zr alloys. Aging a Hf0.65Nb0.35 alloy at 400 and 600°C resulted in the direct precipitation of a fine dispersion of a-phase needles; this morphology differs from the discs of transition α (αt) which Carpenteret al observed in Nb-rich Nb0.68Hf0.32. During continued aging, the needles grow selectively to form colonies or groups of needles in which both the individual needles and the groups of needles have major axes aligned along 〈110〉β type directions. The initial a-phase particles exhibit the Burgers orientation relationship with the parent matrix; continued aging changes the electron diffraction patterns in a way that is similar to that observed in aged Ti-Mo and Ti-Mo-Al alloys where they were attributed to the α- phase having a different crystallographic relationship to the β-phase (Type 2 a-phase). The observed changes in the electron diffraction patterns of aged Hf0.65Nb0.35 cannot be described as resulting from strained Burgers α-phase.  相似文献   

16.
17.
To study how changes in solute elements affect precipitation, six Al−Mg−Si alloys aged at 175 °C were investigated by transmission electron microscopy (TEM). In alloys with 1.3 at. pct solute, when the Si/Mg ratio exceeds 5/6, a sharp hardness peak appears after 3 hours that correlates with a high density of fine Guinier-Preston (GP) zones. A second, broader peak correlates with β″ precipitates and U phases. With high Si/Mg ratios, GP zones survive for long aging times. The β″-Mg5Si6 phase becomes very stable in the alloy with its Si/Mg ratio closest to 6/5. Deviation from this ratio increases fractions of β′, U-phases and disordered precipitates. In Mg-rich alloys less GP zones form and the first peak is suppressed. A coarse precipitate microstructure of β″ and β′ develops, the volume fraction being much higher than in Si-rich alloys. The Mg-rich alloys overage faster. Reducing the content of solutes causes alloys with high Si/Mg ratios to have a more Mg-rich behavior.  相似文献   

18.
The microstructure of an (α + γ) duplex Fe-9.0Al-29.5Mn-l.2Si alloy has been investigated by means of transmission electron microscopy. In the as-quenched condition, extremely fine D03 particles were formed within the ferrite matrix by a continuous ordering transition during quenching. After being aged at 550 °C, the extremely fine D03 particles existing in the as-quenched specimen grew preferentially along (100) directions. With increasing the aging time at 550 °C, a (Si, Mn)-rich phase (designated as “L phase”) began to appear at the regions contiguous to the D03 particles. The L phase has never been observed in various Fe-Al-Mn, Fe-Al-Si, Fe-Mn-Si, and Mn-Al-Si alloy systems before. When the as-quenched specimen was aged at temperatures ranging from 550 °C to 950 °C, the phase transformation sequence occurring within the (α + D03) region as the aging temperature increases was found to be (α + D03 + L phase) → (α + D03 + A13 β-Mn)→ (B2 + D03 + A13 β-Mn)→ (B2 + A13β-Mn)→ (α + A13 β-Mn)→ (α +γ)→α.  相似文献   

19.
Ti-43Al (atomic percent) alloy containing a dispersion of 7 vol pct TiB2 particles was exposed to various thermal treatments to determine the stability of TiB2 in an ⇌2 + β-phase matrix. No new phases were detected at the particle/matrix interfaces even after thermal exposure at 1473 K for 7 days. The absence of an Al peak in the energy dispersive X-ray analysis system (EDS) spectra from TiB2 particles chemically extracted from the specimens aged at 1473 K for 7 days indicated no diffusion of Al from the matrix to the particles. These results indicate that TiB2 is stable in an α2+ β matrix at 1473 K. E. Clevenger, formerly Undergraduate Student, Department of Mechanical and Materials Engineering, Wright State University  相似文献   

20.
The effects of thermal cycling between the parent and martensite phases of two-phase α/β CuZn alloys have been studied by electrical resistance-temperature measurements, optical microscopy, and transmission electron microscopy (TEM). The martensite start (Ms) temperature is dominated primarily by the composition of the β phase but increases substantially between the first and second cycles because of deformation of the α particles and a resultant change in the internal strain fields of the system. With increasing thermal cycling, the Ms temperature increases slightly and eventually becomes constant. However, the transformation hysteresis becomes smaller, and more perfect thermoelastic behavior is found. The number of vestigial deformation markings in the β phase is increased by thermal cycling and becomes more distinct; the dislocation density in the β phase is also increased and features a more crystallographic arrangement. The vestigial deformation of the β phase is instrumental in subsequent martensite nucleation and in creating a martensite microstructural memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号