首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Automatic circle detection in digital images has received considerable attention over the last years in computer vision as several novel efforts aim for an optimal circle detector. This paper presents an algorithm for automatic detection of circular shapes considering the overall process as an optimization problem. The approach is based on the Harmony Search Algorithm (HSA), a derivative free meta-heuristic optimization algorithm inspired by musicians improvising new harmonies while playing. The algorithm uses the encoding of three points as candidate circles (harmonies) over the edge-only image. An objective function evaluates (harmony quality) if such candidate circles are actually present in the edge image. Guided by the values of this objective function, the set of encoded candidate circles are evolved using the HSA so that they can fit into the actual circles on the edge map of the image (optimal harmony). Experimental results from several tests on synthetic and natural images with a varying complexity range have been included to validate the efficiency of the proposed technique regarding accuracy, speed and robustness.  相似文献   

2.
Hough transform has been the most common method for circle detection, exhibiting robustness, but adversely demanding considerable computational effort and large memory requirements. Alternative approaches include heuristic methods that employ iterative optimization procedures for detecting multiple circles. Since only one circle can be marked at each optimization cycle, multiple executions ought to be enforced in order to achieve multi-detection. This paper presents an algorithm for automatic detection of multiple circular shapes that considers the overall process as a multi-modal optimization problem. The approach is based on the artificial bee colony (ABC) algorithm, a swarm optimization algorithm inspired by the intelligent foraging behavior of honeybees. Unlike the original ABC algorithm, the proposed approach presents the addition of a memory for discarded solutions. Such memory allows holding important information regarding other local optima, which might have emerged during the optimization process. The detector uses a combination of three non-collinear edge points as parameters to determine circle candidates. A matching function (nectar-amount) determines if such circle candidates (bee-food sources) are actually present in the image. Guided by the values of such matching functions, the set of encoded candidate circles are evolved through the ABC algorithm so that the best candidate (global optimum) can be fitted into an actual circle within the edge-only image. Then, an analysis of the incorporated memory is executed in order to identify potential local optima, i.e., other circles. The proposed method is able to detect single or multiple circles from a digital image through only one optimization pass. Simulation results over several synthetic and natural images, with a varying range of complexity, validate the efficiency of the proposed technique regarding its accuracy, speed, and robustness.  相似文献   

3.
Hough transform (HT) has been the most common method for circle detection that delivers robustness but adversely demands considerable computational efforts and large memory requirements. As an alternative to HT-based techniques, the problem of shape recognition has also been handled through optimization methods. In particular, extracting multiple circle primitives falls into the category of multi-modal optimization as each circle represents an optimum which must be detected within the feasible solution space. However, since all optimization-based circle detectors focus on finding only a single optimal solution, they need to be applied several times in order to extract all the primitives which results on time-consuming algorithms. This paper presents an algorithm for automatic detection of multiple circular shapes that considers the overall process as a multi-modal optimization problem. In the detection, the approach employs an evolutionary algorithm based on the way in which the animals behave collectively. In such an algorithm, searcher agents emulate a group of animals which interact to each other using simple biological rules. These rules are modeled as evolutionary operators. Such operators are applied to each agent considering that the complete group maintains a memory which stores the optimal solutions seen so-far by applying a competition principle. The detector uses a combination of three non-collinear edge points as parameters to determine circle candidates (possible solutions). A matching function determines if such circle candidates are actually present in the image. Guided by the values of such matching functions, the set of encoded candidate circles are evolved through the evolutionary algorithm so that the best candidate (global optimum) can be fitted into an actual circle within the edge-only image. Subsequently, an analysis of the incorporated memory is executed in order to identify potential local optima which represent other circles. Experimental results over several complex synthetic and natural images have validated the efficiency of the proposed technique regarding accuracy, speed and robustness.  相似文献   

4.
Automatic multiple circle detection based on artificial immune systems   总被引:1,自引:0,他引:1  
Hough transform (HT) has been the most common method for circle detection, exhibiting robustness but adversely demanding a considerable computational load and large storage. Alternative approaches for multiple circle detection include heuristic methods built over iterative optimization procedures which confine the search to only one circle per optimization cycle yielding longer execution times. On the other hand, artificial immune systems (AIS) mimic the behavior of the natural immune system for solving complex optimization problems. The clonal selection algorithm (CSA) is arguably the most widely employed AIS approach. It is an effective search method which optimizes its response according to the relationship between patterns to be identified, i.e. antigens (Ags) and their feasible solutions also known as antibodies (Abs). Although CSA converges to one global optimum, its incorporated CSA-Memory holds valuable information regarding other local minima which have emerged during the optimization process. Accordingly, the detection is considered as a multi-modal optimization problem which supports the detection of multiple circular shapes through only one optimization procedure. The algorithm uses a combination of three non-collinear edge points as parameters to determine circles candidates. A matching function determines if such circle candidates are actually present in the image. Guided by the values of such function, the set of encoded candidate circles are evolved through the CSA so the best candidate (global optimum) can fit into an actual circle within the edge map of the image. Once the optimization process has finished, the CSA-Memory is revisited in order to find other local optima representing potential circle candidates. The overall approach is a fast multiple-circle detector despite considering complicated conditions in the image.  相似文献   

5.
Circle detection using discrete differential evolution optimization   总被引:1,自引:0,他引:1  
This paper introduces a circle detection method based on differential evolution (DE) optimization. Just as circle detection has been lately considered as a fundamental component for many computer vision algorithms, DE has evolved as a successful heuristic method for solving complex optimization problems, still keeping a simple structure and an easy implementation. It has also shown advantageous convergence properties and remarkable robustness. The detection process is considered similar to a combinational optimization problem. The algorithm uses the combination of three edge points as parameters to determine circle candidates in the scene yielding a reduction of the search space. The objective function determines if some circle candidates are actually present in the image. This paper focuses particularly on one DE-based algorithm known as the discrete differential evolution (DDE), which eventually has shown better results than the original DE in particular for solving combinatorial problems. In the DDE, suitable conversion routines are incorporated into the DE, aiming to operate from integer values to real values and then getting integer values back, following the crossover operation. The final algorithm is a fast circle detector that locates circles with sub-pixel accuracy even considering complicated conditions and noisy images. Experimental results on several synthetic and natural images with varying range of complexity validate the efficiency of the proposed technique considering accuracy, speed, and robustness.  相似文献   

6.
Image thresholding is a process that separates particular object within an image from their background. An optimal thresholding technique can be taken as a single objective optimization task, where computation and obtaining a solution can become inefficient, especially at higher threshold levels. In this paper, a new and efficient color image multilevel thresholding approach is presented to perform image segmentation by exploiting the correlation among gray levels. The proposed method incorporates gray-level co-occurrence matrix (GLCM) and cuckoo search (CS) in order to effectively enhance the optimal multilevel thresholding of colored natural and satellite images exhibiting complex background and non-uniformities in illumination and features. The experimental results are presented in terms of mean square error (MSE), peak signal to noise ratio (PSNR), feature similarity index (FSIM), structural similarity index (SSIM), computational time (CPU time in seconds), and optimal threshold values for each primary color component at different thresholding levels for each of the test images. In addition, experiments are also conducted on the Berkeley Segmentation Dataset (BSDS300), and four performance indices of image segmentation- Probability Rand Index (PRI), Variation of Information (VoI), Global Consistency Error (GCE), and Boundary Displacement Error (BDE) are tested. To evaluate the performance of proposed algorithm, other optimization algorithm such as artificial bee colony (ABC), bacterial foraging optimization (BFO), and firefly algorithm (FA) are compared using GLCM as an objective function. Moreover, to show the effectiveness of proposed method, the results are compared to existing context sensitive multilevel segmentation techniques based on Tsalli's entropy. Experimental results showed the superiority of proposed technique in terms of better segmentation results with increased number of thresholds.  相似文献   

7.
为了提高离焦模糊图像复原清晰度,提出一种基于频谱预处理与改进霍夫变换的 离焦模糊盲复原算法。首先改进模糊图像频谱预处理策略,降低了噪声对零点暗圆检测的影响。 然后改进霍夫变换圆检测算法,在降低算法复杂度的同时,增强了模糊半径估计的准确性。最 后利用混合特性正则化复原图像模型对模糊图像进行迭代复原,使复原图像的边缘细节更加清 晰。实验结果表明,提出的模糊半径估计方法较其他方法平均误差更小,改进的频谱预处理策 略更有利于零点暗圆检测,改进的霍夫变换圆检测算法模糊半径估计精度更高,所提算法对已 知相机失焦的小型无人机拍摄的离焦模糊图像具有更好的复原效果。针对离焦模糊图像复原, 通过理论分析和实验验证了改进的模糊半径估计方法的鲁棒性强,所提算法的复原效果较好。  相似文献   

8.
针对虹膜图像中有较多光斑的情况,提出一种基于有向梯度和随机抽样一致性(RANSAC)相结合的虹膜定位算法。该算法根据瞳孔内某点利用有向梯度提取内缘像素点,采用RANSAC定位虹膜内缘;下采样虹膜图像,利用圆差分算子在瞳孔左右两侧拟合出两个圆,进而合并为一个圆;根据圆的参数在虹膜图像中快速精确定位外缘。实验结果表明:该算法在正确率、定位速度和鲁棒性方面均优于传统的虹膜定位算法。  相似文献   

9.
This paper presents a novel idea of intracranial segmentation of magnetic resonance (MR) brain image using pixel intensity values by optimum boundary point detection (OBPD) method. The newly proposed (OBPD) method consists of three steps. Firstly, the brain only portion is extracted from the whole MR brain image. The brain only portion mainly contains three regions–gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). We need two boundary points to divide the brain pixels into three regions on the basis of their intensity. Secondly, the optimum boundary points are obtained using the newly proposed hybrid GA–BFO algorithm to compute final cluster centres of FCM method. For a comparison, other soft computing techniques GA, PSO and BFO are also used. Finally, FCM algorithm is executed only once to obtain the membership matrix. The brain image is then segmented using this final membership matrix. The key to our success is that we have proposed a technique where the final cluster centres for FCM are obtained using OBPD method. In addition, reformulated objective function for optimization is used. Initial values of boundary points are constrained to be in a range determined from the brain dataset. The boundary points violating imposed constraints are repaired. This method is validated by using simulated T1-weighted MR brain images from IBSR database with manual segmentation results. Further, we have used MR brain images from the Brainweb database with additional noise levels to validate the robustness of our proposed method. It is observed that our proposed method significantly improves segmentation results as compared to other methods.  相似文献   

10.
This paper presents a novel and effective technique for extracting multiple ellipses from an image. The approach employs an evolutionary algorithm to mimic the way animals behave collectively assuming the overall detection process as a multi-modal optimization problem. In the algorithm, searcher agents emulate a group of animals that interact with each other using simple biological rules which are modeled as evolutionary operators. In turn, such operators are applied to each agent considering that the complete group has a memory to store optimal solutions (ellipses) seen so far by applying a competition principle. The detector uses a combination of five edge points as parameters to determine ellipse candidates (possible solutions), while a matching function determines if such ellipse candidates are actually present in the image. Guided by the values of such matching functions, the set of encoded candidate ellipses are evolved through the evolutionary algorithm so that the best candidates can be fitted into the actual ellipses within the image. Just after the optimization process ends, an analysis over the embedded memory is executed in order to find the best obtained solution (the best ellipse) and significant local minima (remaining ellipses). Experimental results over several complex synthetic and natural images have validated the efficiency of the proposed technique regarding accuracy, speed, and robustness.  相似文献   

11.
基于边缘最优映射的红外和可见光图像自动配准算法   总被引:3,自引:0,他引:3  
廉蔺  李国辉  张军  涂丹 《自动化学报》2012,38(4):570-581
针对同一场景的红外和可见光图像间一致特征难以提取和匹配的难题, 提出了一种在多尺度空间中基于边缘最优映射的自动配准算法. 在由粗至细的尺度空间中, 算法分别采用仿射模型和投影模型作为参考图像和待配准图像间的空间变换模型. 在每个尺度层上, 首先基于相位一致性方法提取两幅图像的边缘结构, 并在相应的空间变换模型下将在待配准图像中提取的二值边缘映射到参考图像的边缘强度图上; 接着采用并行遗传算法寻找一组全局最优的模型参数, 使两幅图像间的结构相似度最大. 在各层的寻优结束之后, 使用Powell算法对全局寻优后的模型参数进行局部精化. 实验结果表明, 该算法能够充分利用图像间的视觉相似结构, 有效地实现红外和可见光图像的自动配准.  相似文献   

12.
在模式识别和计算机视觉领域,圆检测的应用十分重要。目前,大部分圆检测算法都把关注点放在精确度和检测效率上,随机算法具有计算效率高和占用内存少的优点,然而,随机算法通过选取大量的候选圆并统计落在候选圆上的像素总数判断圆的存在,在实时检测中并不适用。文章提出了一种基于圆的对称性的改进算法,加速了判断候选圆是否为真实圆的过程,同时在统计候选圆上的像素时没有采集图像中全部的边缘像素,而是采集候选圆的内接正方形和外切正方形范围内的边缘像素。实验表明,这种方法在保持圆检测准确性的条件下减少了运算时间。  相似文献   

13.
针对由动态范围,光照条件,图像捕获设备等因素获得的低亮度图像,提出了一种基于亮度评估技术的特征增强衍生图融合算法来实现亮度较暗图像的对比度调整和特征增强.首先,利用亮度评估技术对低亮度图像的亮度进行评估优化处理,得到曝光率映射;然后,结合曝光率映射和改进的卡方分布函数模型来获取两幅特征增强的衍生图进行融合.最后,利用改进的衍生图融合算法得到最终融合图像.实验结果表明,所提算法的亮度误差,视觉信息保真度,图像互信息等评估参数优于近期方法,在提升图像对比度同时保留了图像良好曝光率区域,并较好地恢复了低亮度区域的边缘以及纹理等细节信息.  相似文献   

14.
This paper presents a multilevel image thresholding approach which relies on Tsallis entropy using Fuzzy partition with a novel threshold selection technique. In order to compute the optimal threshold values, Differential Evolution (DE) has been employed. The proposed method can further be exploited in image segmentation which is considered to be a critical step in image processing. Our proposed threshold selection technique is based on Tsallis-Fuzzy entropy and the results are compared with Shannon entropy (or fuzzy entropy) and Tsallis entropy based existing threshold selection techniques. The experiments are performed on two different sets of images and the results have been compared with that of existing state-of-the-art methods, namely, Patch Levy Bees' Algorithm (PLBA), Bacterial Foraging optimization (BFO), modified Bacterial Foraging optimization (MBFO) and Bees' Algorithm (BA). Quantitative analysis is carried out based on three image quality metrics viz SSIM, PSNR and SNR. Standard deviation and CPU time for convergence of the objective function have been calculated for performance evaluation. Furthermore, the statistical significance of our method has been estimated using Friedman test and Wilcoxon test. The experimental results manifest that our method produces results superior to the methods in comparison.  相似文献   

15.
Sobel算子在阈值偏高或偏低的情况下会产生伪边缘或边缘丢失的问题。为此,将细菌觅食优化算法与最大类间方差相结合,利用细菌觅食优化算法的全局寻优能力,以最大类间方差为适应度函数搜索最佳边缘检测阈值,对图像进行自动边缘检测。实验结果证明,该方法能够取得较好的边缘分割效果,提高阈值检索速度。  相似文献   

16.
目的 立体匹配是计算机双目视觉的重要研究方向,主要分为全局匹配算法与局部匹配算法两类。传统的局部立体匹配算法计算复杂度低,可以满足实时性的需要,但是未能充分利用图像的边缘纹理信息,因此在非遮挡、视差不连续区域的匹配精度欠佳。为此,提出了融合边缘保持与改进代价聚合的立体匹配。方法 首先利用图像的边缘空间信息构建权重矩阵,与灰度差绝对值和梯度代价进行加权融合,形成新的代价计算方式,同时将边缘区域像素点的权重信息与引导滤波的正则化项相结合,并在多分辨率尺度的框架下进行代价聚合。所得结果经过视差计算,得到初始视差图,再通过左右一致性检测、加权中值滤波等视差优化步骤获得最终的视差图。结果 在Middlebury立体匹配平台上进行实验,结果表明,融合边缘权重信息对边缘处像素点的代价量进行了更加有效地区分,能够提升算法在各区域的匹配精度。其中,未加入视差优化步骤的21组扩展图像对的平均误匹配率较改进前减少3.48%,峰值信噪比提升3.57 dB,在标准4幅图中venus上经过视差优化后非遮挡区域的误匹配率仅为0.18%。结论 融合边缘保持的多尺度立体匹配算法有效提升了图像在边缘纹理处的匹配精度,进一步降低了非遮挡区域与视差不连续区域的误匹配率。  相似文献   

17.
当前社会,人们对于身份安全越来越重视,尤其是在一些高度保密或者涉及个人隐私方面的场合,一对一的身份识别显得尤为重要。而虹膜识别恰好具备高效、不易被仿造等特点,使其作为一项身份识别技术被推向了热潮。图像边缘检测一直是图像处理中的经典研究课题,也是至今仍没有得到圆满解决的一类问题。因此,探讨获取图像的边缘和轮廓的问题,是图像工程师们的重中之重。而虹膜识别技术中的边缘检测也如上所说是重要的一项技术,虹膜的内外边界可以近似地用圆来拟合。内圆表示虹膜与瞳孔的边界,外圆表示虹膜与巩膜的边界,但是这两个圆并不是同心圆。而如何更好、更准确地且不受外界干扰以及图像模糊情况下仍能较为有效地进行内外圆的边缘检测是研究的重点。文中就微积分法用于虹膜边缘检测方面展开了研究。  相似文献   

18.
一种虹膜定位的新算法   总被引:1,自引:0,他引:1  
针对虹膜外径边缘图像提取的困难,提出对增强了对比度的虹膜图像进行阈值分割之后用圆检测方法进行虹膜定位的简便而快速的算法.首先,根据虹膜图像的边缘图像用圆检测随机Hough变换方法提取瞳孔的圆心与半径;然后,对用直方图均衡化方法增强了对比度的虹膜图像进行阈值分割,提取分割后的图像的二值边缘图像;最后,利用已经提取的瞳孔的圆周参数等先验知识检测虹膜外径与圆心。实验结果表明,该算法提高了虹膜定位的速度,并且具有较好的健壮性与稳定性。  相似文献   

19.
基于存在概率图的圆检测方法   总被引:1,自引:0,他引:1  
提出了一种基于存在概率图的圆检测方法,将图像边缘点共圆结构信息变换为圆存在概率图中的峰值,再通过峰值检测确定圆的参数。该方法能有效地检出边缘不清晰、不完整的圆形轮廓,具有占用内存少,阈值物理意义明确的特点,较好地解决了标准HT圆检测方法中占用内存空间大,计算效率低的问题。实验结果表明圆存在概率图具有较强的稳定性和分辨能力。  相似文献   

20.
This paper presents bacterial foraging optimization (BFO) algorithm and its adaptive version to optimize the planning of passive harmonic filters (PHFs).The important problem of using PHFs is determining location, size and harmonic tuning orders of them, which is reach standard levels of harmonic distortion with applying minimum cost of passive filters.In this study to optimize the PHFs location, size and setting the harmonic tuning orders in the distribution system, considered objective function includes the reduction of power loss and investment cost of PHFs. At the same time, constraints include voltage limits, number/size of installed PHFs, limit candidate buses for PHFs installation and the voltage total harmonic distortion (THDv) in all buses. The harmonic levels of system are obtained by current injections method and the load flow is solved by the iterative method of power sum, which is suitable for the accuracy requirements of this type of study. It is shown that through an economical placement and sizing of PHFs the total voltage harmonic distortion and active power loss could be minimized simultaneously.The considered objective function is of highly non-convex manner, and also has several constraints. On the other hand due to significant computational time reduction and faster convergence of BFO in comparison with other intelligent optimization approach such as genetic algorithm (GA), particle swarm optimization (PSO) and artificial bee colony (ABC) the simple version of BFO has been implemented. Of course other versions of BFO such as Adaptive BFO and combination of BFO with other method due to complexity of harmonic optimization problem have not considered in this research.The simulation results for small scale test system with 10 buses, showed the significant computational time reduction and faster convergence of BFO in comparison with GA, PSO and ABC. Therefore in large scale radial system with 34 buses, the proposed method is solved using BFO.The simulation results for a 10-bus system as a small scale and 34-bus radial system as a large scale show that the proposed method is efficient for solving the presented problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号