首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of the semiconducting compound Mg2Ge were deposited by magnetron cosputtering from source targets of high-purity Mg and Ge onto glass substrates at temperatures T s = 300°C to 700°C. X-ray diffraction shows that the Mg2Ge compound begins to form at a substrate temperature T s ≈ 300°C. Films deposited at T s = 400°C to 600°C are single-phase Mg2Ge and have strong x-ray peaks. At higher T s the films tend to be dominated by a Ge-rich phase primarily due to the loss of magnesium vapor from the condensing film.␣At optimum deposition temperatures, 550°C to 600°C, films have an electrical conductivity σ 600 K = 20 Ω−1 cm−1 to 40 Ω−1 cm−1 and a Seebeck coefficient α = 300 μV K−1 to 450 μV K−1 over a broad temperature range of 200 K to 600 K.  相似文献   

2.
In major applications, optimal power will be achieved when thermoelectric films are at least 100 μm thick. In this paper we demonstrate that screen-printing is an ideal method to deposit around 100 μm of (Bi,Sb)2(Te,Se)3-based films on a rigid or flexible substrate with high Seebeck coefficient value (90 μV K−1 to 160 μV K−1) using a low-temperature process. Conductive films have been obtained after laser annealing and led to acceptable thermoelectric performance with a power factor of 0.06 μW K−2 cm−1. While these initial material properties are not at the level of bulk materials, the complete manufacturing process is cost-effective, compatible with large surfaces, and affords a mass-production technique.  相似文献   

3.
We report on the experimental investigation of the potential of InGaN alloys as thermoelectric (TE) materials. We have grown undoped and Si-doped In0.3Ga0.7N alloys by metalorganic chemical vapor deposition and measured the Seebeck coefficient and electrical conductivity of the grown films with the aim of maximizing the power factor (P). It was found that P decreases as electron concentration (n) increases. The maximum value for P was found to be 7.3 × 10−4 W/m K2 at 750 K in an undoped sample with corresponding values of Seebeck coefficient and electrical conductivity of 280 μV/K and 93␣(Ω cm)−1, respectively. Further enhancement in P is expected by improving the InGaN material quality and conductivity control by reducing background electron concentration.  相似文献   

4.
Polycrystalline SnO2-based samples (Sn0.97−x Sb0.03Zn x O2, x = 0, 0.01, 0.03) were prepared by solid-state reactions. The thermoelectric properties of SnO2 doped with Sb and Zn were investigated from 300 K to 1100 K. X-ray diffraction (XRD) analysis revealed all XRD peaks of all the samples as identical to the rutile structure, except for the x = 0.03 sample, which had a small amount of Zn2SbO4 as a secondary phase. We found that the power factor of the x = 0.03 sample was significantly improved due to the simultaneous increase in the electrical conductivity and the Seebeck coefficient. A power factor value of ∼2 × 10−4 W m−1 K−2 was obtained for the x = 0.03 sample at 1060 K, 126% higher than that for the undoped sample.  相似文献   

5.
The temperature dependence of the thermal conductivity κ(T), electrical resistivity ρ(T), and Seebeck coefficient S(T) of Mg2Sn:Ag crystals with 0 at.% to 1 at.% Ag content were measured at T = 2 K to 400 K. The crystals were cut from ingots that were prepared by the vertical Bridgman method. Undoped samples show a dramatic κ ∝ T 3 rise at low temperatures to a peak value κ 15K = 477 W m−1 K−1. This leads to exceptionally large phonon drag effects causing giant thermopower with S rising sharply to a peak value S 20K = 3000 μV K−1. At higher temperatures S decreases and changes sign to intrinsic values S ≈ −60 μV K−1. The addition of Ag changes the transport properties as follows: (a) κ decreases systematically, the peak shifts to 30 K and falls to 7 W m−1 K−1; (b) ρ changes from high to low values; (c) S(T) changes to a linear dependence with S 300K ≈ 150 μV K−1 to 200 μV K−1.  相似文献   

6.
This article demonstrates that carrier concentrations in bismuth telluride films can be controlled through annealing in controlled vapor pressures of tellurium. For the bismuth telluride source with a small excess of tellurium, all the films reached a steady state carrier concentration of 4 × 1019 carriers/cm3 with Seebeck coefficients of −170 μV K−1. For temperatures below 300°C and for film thicknesses of 0.4 μm or less, the rate-limiting step in reaching a steady state for the carrier concentration appeared to be the mass transport of tellurium through the gas phase. At higher temperatures, with the resulting higher pressures of tellurium or for thicker films, it was expected that mass transport through the solid would become rate limiting. The mobility also changed with annealing, but at a rate different from that of the carrier concentration, perhaps as a consequence of the non-equilibrium concentration of defects trapped in the films studied by the low temperature synthesis approach.  相似文献   

7.
A thermopile sensor was processed on a glass substrate by electrodeposition of n-type bismuth telluride (Bi-Te) and p-type antimony telluride (Sb-Te) films. The n-type Bi-Te film electrodeposited at −50 mV in a 50 mM electrolyte with a Bi/(Bi + Te) mole ratio of 0.5 exhibited a Seebeck coefficient of −51.6 μV/K and a power factor of 7.1 × 10−4 W/K2 · m. The p-type Sb-Te film electroplated at 20 mV in a 70 mM solution with an Sb/(Sb + Te) mole ratio of 0.9 exhibited a Seebeck coefficient of 52.1 μV/K and a power factor of 1.7 × 10−4 W/K2 · m. A thermopile sensor composed of 196 pairs of the p-type Sb-Te and the n-type Bi-Te thin-film legs exhibited sensitivity of 7.3 mV/K.  相似文献   

8.
An ultralow-thermal-conductivity compound with the ideal formula [(PbSe)1.00]1[MoSe2]1 has been successfully crystallized across a range of compositions. The lattice parameters varied from 1.246 nm to 1.275 nm, and the quality of the observed 00 diffraction patterns varied through the composition region where the structure crystallized. Measured resistivity values ranged over an order of magnitude, from 0.03 Ω m to 0.65 Ω m, and Seebeck coefficients ranged from −181 μV K−1 to 91 μV K−1 in the samples after the initial annealing to form the basic structure. Annealing of samples under a controlled atmosphere of selenium resulted in low conductivities and large negative Seebeck coefficients, suggesting an n-doped semiconductor. Scanning transmission electron microscopy cross-sections confirmed the interleaving of bilayers of PbSe with Se-Mo-Se trilayers. High-angle annular dark-field images revealed an interesting volume defect, where PbSe grew through a region where a layer of MoSe2 would be expected in the perfect structure. Further studies are required to correlate the density of these defects with the observed electrical properties.  相似文献   

9.
The Seebeck coefficient, electrical resistivity, and thermal conductivity of Zr3Mn4Si6 and TiMnSi2 were studied. The crystal lattices of these compounds contain relatively large open spaces, and, therefore, they have fairly low thermal conductivities (8.26 Wm−1 K−1 and 6.63 Wm−1 K−1, respectively) at room temperature. Their dimensionless figures of merit ZT were found to be 1.92 × 10−3 (at 1200 K) and 2.76 × 10−3 (at 900 K), respectively. The good electrical conductivities and low Seebeck coefficients might possibly be due to the fact that the distance between silicon atoms in these compounds is shorter than that in pure semiconductive silicon.  相似文献   

10.
Polycrystalline In2O3 ceramics co-doped with Zn and Nd were prepared by the spark plasma sintering (SPS) process, and microstructure and thermoelectric (TE) transport properties of the ceramics were investigated. Our results indicate that co-doping with Zn2+ and Nd3+ shows a remarkable effect on the transport properties of In2O3-based ceramics. Large electrical conductivity (~130 S cm−1) and thermopower (~220 μV K−1) can be observed in these In2O3-based ceramic samples. The maximum power factor (PF) reaches 5.3 × 10−4 W m−1 K−2 at 973 K in the In1.92Nd0.04Zn0.04O3 sample, with a highest ZT of ~0.25.  相似文献   

11.
A new alkaline electrolyte containing SbO2, TeO32−, triethanolamine, and diaminourea polymer (DAUP) was used to deposit Sb2Te x (2 < x < 6) films. Deaeration of the electrolyte with argon was applied to eliminate oxygen interference. Hot uniaxial pressing (HUP) was chosen as the posttreatment process for the deposited films. DAUP can significantly increase the tellurium content in the deposited film, with little influence on deposition thermodynamics. The as-deposited films exhibited amorphous crystal structure. Argon deaeration proved to be favorable for improving the Seebeck coefficient of the films because oxygen contamination was reduced. HUP treatment reduced the electrical resistance of the films by orders of magnitude. The maximum Seebeck coefficient and power factor of 532 μV K−1 and 1.58 mW m−1 K−2, respectively, were obtained with DAUP and argon deaeration, followed by HUP posttreatment.  相似文献   

12.
Ternary rare-earth sulfides NdGd1+x S3, where 0 ≤ x ≤ 0.08, were prepared by sulfurizing Ln2O3 (Ln = Nd, Gd) with CS2 gas, followed by reaction sintering. The sintered samples have full density and homogeneous compositions. The Seebeck coefficient, electrical resistivity, and thermal conductivity were measured over the temperature range of 300 K to 950 K. All the sintered samples exhibit a negative Seebeck coefficient. The magnitude of the Seebeck coefficient and the electrical resistivity decrease systematically with increasing Gd content. The thermal conductivity of all the sintered samples is less than 1.9 W K−1 m−1. The highest figure of merit ZT of 0.51 was found in NdGd1.02S3 at 950 K.  相似文献   

13.
Mg2Sn compounds were prepared by the modified vertical Bridgman method, and were doped with Bi and Ag to obtain n- and p-type materials, respectively. Excess Mg was also added to some of the ingots to compensate for the loss of Mg during the preparation process. The Mg2Sn samples were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM), and their power factors were calculated from the Seebeck coefficient and electrical conductivity, measured from 80 K to 700 K. The sample prepared with 4% excess Mg, which contains a small amount of Mg2Sn + Mg eutectic phase, had the highest power factor of 12 × 10−3 W m−1 K−2 at 115 K, while the sample doped with 2% Ag, in which a small amount of eutectics also exists, has a power factor of 4 × 10−3 W m−1 K−2 at 420 K.  相似文献   

14.
The electrical conductivity and Seebeck coefficient of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films were simultaneously improved by adding an ionic liquid (IL) into a polymer solution of the polymers. The maximum electrical conductivity of such a PEDOT:PSS/IL film reached 174 S cm−1, more than an order of magnitude higher than that of pure PEDOT:PSS film, and the maximum Seebeck coefficient was up to 30 μV K−1, more than twice the value for pure PEDOT:PSS film. This behavior is different from conventional thermoelectric (TE) materials, whose TE properties are strongly correlated, such as increasing electrical conductivity with increasing carrier concentration, usually resulting in a logarithmic decrease in Seebeck coefficient. Atomic force microscopy images of the PEDOT:PSS/IL films indicated that the ILs induced formation of a particular three-dimensional structure of highly conducting PEDOT grains, resulting in improvement of the TE performance of PEDOT:PSS films.  相似文献   

15.
Electrical activation studies were carried out on Si-implanted Al0.33Ga0.67N as a function of ion dose, annealing temperature, and annealing time. The samples were implanted at room temperature with Si ions at 200 keV in doses ranging from 1 × 1014 cm−2 to 1 × 1015 cm−2, and subsequently proximity-cap annealed from 1150°C to 1350°C for 20 min to 60 min in a nitrogen environment. One hundred percent electrical activation efficiency was obtained for Al0.33Ga0.67N samples implanted with a dose of 1 × 1015 cm−2 after annealing at either 1200°C for 40 min or at 1300°C for 20 min. The samples implanted with doses of 1 × 1014 cm−2 and 5 × 1014 cm−2 exhibited significant activations of 74% and 90% after annealing for 20 min at 1300°C and 1350°C, respectively. The mobility increased as the annealing temperature increased from 1150°C to 1350°C, showing peak mobilities of 80 cm2/V s, 64 cm2/V s, and 61 cm2/V s for doses of 1 × 1014 cm−2, 5 × 1014 cm−2, and 1 × 1015 cm−2, respectively. Temperature-dependent Hall-effect measurements showed that most of the implanted layers were degenerately doped. Cathodoluminescence measurements for all samples exhibited a sharp neutral donor-bound exciton peak at 4.08 eV, indicating excellent recovery of damage caused by ion implantation.  相似文献   

16.
We have investigated the crystal growth of single-phase MnSi1.75−x by a temperature gradient solution growth (TGSG) method using Ga and Sn as solvents and MnSi1.7 alloy as the solute, and measured the thermoelectric properties of the resulting crystals. Single-phase Mn11Si19 and Mn4Si7 crystals were grown successfully using Ga and Sn as solvents, respectively. The typical size of a grown ingot of Mn11Si19 was 2 mm to 4 mm in thickness and 12 mm in diameter, whereas Mn4Si7 had polyhedral shape with dimensions in the range of several millimeters. The single-phase Mn11Si19 has good electrical conduction (ρ = 0.89 × 10−3 Ω cm to 1.09 × 10−3 Ω cm) compared with melt-grown multiphase higher-manganese silicide (HMS) crystals. The Seebeck coefficient, power factor, and thermal conductivity were 77 μV K−1 to 85 μV K−1, 6.7 μW cm−1 K−2 to 7.2 μW cm−1 K−2, and 0.032 W cm−1 K−1, respectively, at 300 K.  相似文献   

17.
In this paper, a novel and simple sodium alginate (SA) gel method was developed to prepare γ-Na x Co2O4. This method involved the chemical gelling of SA in the presence of Co2+ ions by cross-linking. After calcining at 700°C to 800°C, single-phase γ-Na x Co2O4 crystals were obtained. The arrangement of about 1 μm to 4 μm flaky particles exhibited a well-tiled structure along the plane direction of the flaky particles. SA not only acted as the control agent for crystal growth, but also provided a Na source for the γ-Na x Co2O4 crystals. The electrical properties of γ-Na x Co2O4 ceramics prepared via ordinary sintering after cold isostatic pressing were investigated. The Seebeck coefficient and power factor of the bulk material were 177 μV K−1 and 4.3 × 10−4 W m−1 K−2 at 850 K, respectively.  相似文献   

18.
Mg2(Si0.3Sn0.7)1−y Sb y (0 ≤ y ≤ 0.04) solid solutions were prepared by a two-step solid-state reaction method combined with the spark plasma sintering technique. Investigations indicate that the Sb doping amount has a significant impact on the thermoelectric properties of Mg2(Si0.3Sn0.7)1−y Sb y compounds. As the Sb fraction y increases, the electron concentration and electrical conductivity of Mg2(Si0.3Sn0.7)1−y Sb y first increase and then decrease, and both reach their highest value at y = 0.025. The sample with y = 0.025, possessing the highest electrical conductivity and one of the higher Seebeck coefficient values among all the samples, has the highest power factor, being 3.45 mW m−1 K−2 to 3.69 mW m−1 K−2 in the temperature range of 300 K to 660 K. Meanwhile, Sb doping can significantly reduce the lattice thermal conductivity (κ ph) of Mg2(Si0.3Sn0.7)1−y Sb y due to increased point defect scattering, and κ ph for Sb-doped samples is 10% to 20% lower than that of the nondoped sample for 300 K < T < 400 K. Mg2(Si0.3Sn0.7)0.975Sb0.025 possesses the highest power factor and one of the lower κ ph values among all the samples, and reaches the highest ZT value: 1.0 at 640 K.  相似文献   

19.
We report on the successful hydrothermal synthesis of Bi0.5Sb1.5Te3, using water as the solvent. The products of the hydrothermally prepared Bi0.5 Sb1.5Te3 were hexagonal platelets with edges of 200–1500 nm and thicknesses of 30–50 nm. Both the Seebeck coefficient and electrical conductivity of the hydrothermally prepared Bi0.5Sb1.5Te3 were larger than those of the solvothermally prepared counterpart. Hall measurements of Bi0.5Sb1.5Te3 at room temperature indicated that the charge carrier was p-type, with a carrier concentration of 9.47 × 1018 cm−3 and 1.42 × 1019 cm−3 for the hydrothermally prepared Bi0.5Sb1.5Te3 and solvothermally prepared sample, respectively. The thermoelectric power factor at 290 K was 10.4 μW/cm K2 and 2.9 μW/cm K2 for the hydrothermally prepared Bi0.5Sb1.5Te3 and solvothermally prepared sample, respectively.  相似文献   

20.
Thermoelectric Sb x Te y films were potentiostatically electrodeposited in aqueous nitric acid electrolyte solutions containing different concentrations of TeO2. Stoichiometric Sb x Te y films were obtained by applying a voltage of −0.15 V versus saturated calomel electrode (SCE) using a solution consisting of 2.4 mM TeO2, 0.8 mM Sb2O3, 33 mM tartaric acid, and 1 M HNO3. The nearly stoichiometric Sb2Te3 films had a rhombohedral structure, R[`3]m R\bar{3}m , with a preferred orientation along the (015) direction. The films had hole concentration of 5.8 × 1018/cm3 and exhibited mobility of 54.8 cm2/Vs. A more negative potential resulted in higher Sb content in the deposited Sb x Te y films. Furthermore, it was observed that the hole concentration and mobility decreased with increasingly negative deposition potential, and eventually showed insulating properties, possibly due to increased defect formation. The absolute value of the Seebeck coefficient of the as-deposited Sb2Te3 thin film at room temperature was 118 μV/K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号