共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
改进Elman神经网络在径流预测中的应用 总被引:2,自引:0,他引:2
崔东文 《水利水运工程学报》2013,(2):71-77
针对传统静态前馈神经网络动态性能较差的缺点,提出一种基于遗传算法(GA)优化Elman神经网络连接权值的GA-Elman多元变量年径流预测模型.以新疆伊犁河雅马渡站径流预测为例进行实例分析,并构建传统Elman,传统BP和GA-BP多元变量年径流预测模型作为对比模型,预测结果与文献IEA-BP网络模型预测结果进行对比.结果表明:①GA-Elman模型的拟合及预测效果略优于文献IEA-BP模型,该模型用于多元变量年径流预测是合理可行的,具有较好的预测精度和泛化能力.②在相同网络结构及传递函数等条件下,GA-Elman模型的预测精度和泛化能力优于GA-BP模型,传统Elman模型优于传统BP模型,表明具有适应时变特性的Elman反馈动态递归网络预测性能优于BP网络;GA能有效优化Elman神经网络连接权值,使网络的预测精度和泛化能力有了较大提高. 相似文献
3.
4.
基于模糊神经网络和遗传算法的大坝安全监控模型 总被引:6,自引:0,他引:6
应用监控模型来监控大坝的工作性态是一条有效途径,但由于大坝工作条件复杂,影响因素繁多,为以精确的数学进行描述带来了很大的困难,而应采用从定性到定量的综合集成的方法,将专家知识,监测数据和各种信息与计算机软硬件技术结合起来,把坝工理论和坝工家的经验结合起来对其进行研究,文中应用模糊神经网络和遗传算法等人工智能技术,依据专家的经验确定隶性函数,从而建立模糊神经网络预报模型,根据专家对实际情况的正确分析,对预报结果进行修正,达到进一步提高预报精度的目的。 相似文献
5.
应用监控模型来监控大坝的工作性态是一条有效途径 ,但由于大坝工作条件复杂 ,影响因素繁多 ,为以精确的数学模型进行描述带来了很大的困难 ,而应采用从定性到定量的综合集成的方法 ,将专家知识、监测数据和各种信息与计算机软硬件技术结合起来 ,把坝工理论和坝工专家的经验结合起来对其进行研究。文中应用模糊神经网络和遗传算法等人工智能技术 ,依据专家的经验确定隶属函数 ,从而建立模糊神经网络预报模型 ,根据专家对实际情况的正确分析 ,对预报结果进行修正 ,达到进一步提高预报精度的目的 相似文献
6.
利用BP神经网络模型较强的非线性处理能力特性,以水位、温度和时效作为输入层,大坝位移为输出层,建立BP神经网络模型对龙滩大坝的位移监测数据进行模拟和预测,并将拟合值、预报值和实测值进行对比分析,结果表明:BP神经网络模型对大坝位移拟合效果较好,预报值精度较高,具有一定的参考应用价值。 相似文献
7.
8.
近年来随着引水工程的不断建设,工程地质及施工条件愈发复杂,大坝安全和稳定性评价变得尤为重要.文章利用某土石坝工程的变形监测统计资料,建立神经网络预测模型定级预测大坝的变形区间,结合预测结果分析不同模型的适用性,得出ACO-BP神经网络在大坝变形区间预测更贴合实际,在实践分析中应用价值广泛. 相似文献
9.
10.
针对Elman神经网络收敛速度慢、容易陷入局部极小等问题,建立了人工蜂群算法(ABC)与Elman神经网络组合的大坝变形监控模型。应用于某混凝土重力坝的结果表明,单纯Elman神经网络建模方法预测的相对误差和标准差分别为3.50%和0.131,ABC-Elman(人工蜂群算法与Elman神经网络)模型预测的相对误差和标准差分别为1.98%和0.063。从各影响因子对大坝变形的贡献上看,水压分量占27.9%,温度分量占62.3%,时效分量占9.8%。ABC-Elman模型在建模效率、预测精度等方面均有一定的优势,较适合于大坝变形的建模分析,并可推广于大坝渗流、应力等监控模型中。 相似文献
11.
12.
13.
针对金盆水库原形观测——大坝应力的温度效应、时变效应,通过对比神经网络各种算法的优缺点,提出一种能够在线学习、在线预测的递推径向基函数神经网络,用于监测可能造成大坝纵横裂缝的大坝应力。实际数据的仿真预测结果与以往算法相比,克服了以往算法只能离线训练,或在线训练费时、耗内存的缺点,显示了一定的有效性和实用性。 相似文献
14.
本文结合混沌理论、小波分解与重构,以及径向基函数(RBF)神经网络的优点,提出了一种基于混沌的大坝监测序列小波RBF神经网络预测模型。该模型主要利用小波分析将大坝监测序列分解为趋势项和细节时间序列,并利用RBF神经网络和基于RBF神经网络的混沌理论对两种时间序列进行预测,最后通过小波重构得到预测值。实例分析表明,本模型能够克服监测序列中的噪声干扰,反映大坝监测序列的多尺度特性,对监测数据的预测精度较高,可应用于实际工程。 相似文献
15.
基于NMEA-BP大坝变形监测模型研究 总被引:2,自引:0,他引:2
在对思维进化算法(MEA)改进的基础上,开展了基于思维进化算法与BP神经网络的大坝变形监测模型的研究。通过引入小生境技术和思维进化算法,克服了BP神经网络易陷入局部最优值、训练时间长和收敛速度慢等缺点,极大地提高了其搜索效率和全局搜索能力。通过进一步利用改进的思维进化算法优化BP神经网络的权值和阈值,建立了NMEA-BP大坝变形监测模型,并用该模型对工程实例进行了拟合预测。结果表明,NMEA-BP模型有效提高了大坝变形预测的精度,能更高效准确的进行大坝变形监测。研究成果为大坝变形监测的理论和实践研究提供参考。 相似文献
16.
BP神经网络以其对非线性系统的强大映射能力而被广泛应用于模糊性、随机性强的大坝变形预测分析中。传统的BP神经网络由于初始权值和阈值的随机性,容易导致网络在训练过程中极易陷入局部最小值,同时存在网络收敛速度慢等缺点。针对传统算法的不足,采用改进的粒子群算法(IPSO)对BP网络的初始权值和阈值给予优化,建立大坝变形预测的IPSO-BP模型,并与PSO-BP网络模型进行对比。结果表明,改进的IPSO-BP模型具有收敛速度更快、预测精度更高的优点。该方法可供大坝安全监测和预警分析参考。 相似文献
17.
潘洁晨 《水资源与水工程学报》2012,23(3):166-169
针对传统的数学模型方法的不足,本文通过对BP网络模型的研究,建立改进的BP神经网络预测模型即采用附加动量法和自适应学习效率相结合的BP模型,并使用MATLAB语言编程加以实现。并将该模型应用于哈尔滨西泉眼水库大坝变形监测数据的分析和预测,发现其预报精度较传统模型有较大提高。 相似文献