首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
实现了具有电抗补偿器和分节阻抗变换器的砷化镓场效应晶体管放大器,并对其特性作了测量。砷化镓场效应晶体管的输入和输出阻抗的虚部用电抗补偿器转换成任意电阻,然后再用分节阻抗变换器转换成50欧姆特性阻抗。对于采用 f_(max)-15千兆赫砷化镓场效应晶体管的放大器,在6.5千兆赫时得到2千兆赫1分贝带宽和5分贝的增益,且其值大致与计算值相符。己实现7分贝的噪声系数。  相似文献   

2.
一种从350兆赫至14千兆赫频率范围的超宽带放大器组件已经研制成功。在整个这一40:1带宽范围内最小增益为4分贝,输出功率有13分贝毫瓦。该放大器用负反馈和正反馈回路与一个砷化镓金属半导体场效应晶体管做在一起,该砷化镓金属半导体场效应晶体管的主要特性在于寄生参数低。该晶体管栅极尺寸为800×1微米。文中讨论了砷化镓金属半导体场效应管的工艺和射频性能,也讨论了单端反馈放大器的设计考虑和性能。  相似文献   

3.
据讯,美国IBM研究实验室研制了一种在目前来说频率最高的高频晶体管化放大器和振荡器。为了获得14~18千兆赫下的性能,该实验装置应用了砷化镓肖特基势垒场效应晶体管。这些晶体管IBM公司称之为金属-半导体-场效应晶体管(MESFET),它们在15千兆赫下具有8分贝的增益。用这类晶体管制成的三级放大器在16.9千兆赫下的功率增益为6  相似文献   

4.
最近,美帝国际商业机器公司制成了14~18千兆赫的实验性晶体管放大器和振荡器。由于采用了砷化镓晶体管,使它们的频率特性提高了。在室温下,砷化镓晶体管中的电子饱和漂移速度比在硅中大2倍。据报道,在17千兆赫下,振荡器输出为1毫瓦。在14.9千兆赫、150千兆赫的3分贝带宽下,四级窄带放大器产生最大的功率增益为16分贝。在18千兆赫、380兆赫的带宽以上,三级放大器呈现的最大增益为6分贝。电路中所采用的新型晶体管的外推法测量数据表明,晶体管的最高振荡频率实际上在30千兆赫以上。理论计算表明,只要  相似文献   

5.
做出了10千兆赫微波频率下低噪声放大砷化镓场效应晶体管,使固体放大器频率范围比使用硅晶体管提高2~3倍。GaAs FET 最高振荡频率达30千兆赫,8千兆赫和16千兆赫下测得的功率增益分别为8分贝和3分贝,见图1。4千兆赫下噪声3分贝,低于迄今为止报导的晶体管噪声水平。此外,场效应晶体管噪声随频率的变化较小,8千兆赫下仅为5分贝,见图2。器件制于半绝缘 GaAs 衬底上的10~(17)厘米~(-3)掺硫外延薄膜上。外延层必须很薄(约0.3  相似文献   

6.
本文叙述一种工作在13K、使用源电感反馈的三级砷化镓场效应晶体管放大器。在1.2-1.7千兆赫频带里,该放大器噪声温度小于10K,输入反射损耗大于15分贝。  相似文献   

7.
在12~20千兆赫的频率范围内研究了肖特基势垒栅砷化镓场效应晶体管。最大有用功率增益的测量表明,在这个范围内,器件具有比预期更高的增益。用带线技术制成了输出功率为4毫瓦的17千兆赫振荡器和功率增益为16分贝的四级14.9千兆赫放大器。  相似文献   

8.
对贝尔实验室微波砷化镓场效应晶体管放大器在液氮制冷(78°K)下4千兆赫的噪声温度已进行了测量,得到的最佳噪声温度大约是30°K(0.4分贝的噪声系数),而4千兆赫下噪声温度的室温值是152°K(1.8分贝)。  相似文献   

9.
用投影光刻制造亚微米栅砷化镓金属-半导体场效应晶体管,获得了在4千兆赫下噪声0.8分贝、6千兆赫下噪声1.3分贝、相关的增益至少9分贝的结果。  相似文献   

10.
本文叙述了一个X波段的砷化镓肖特基势垒栅场效应晶体管放大器的设计和性能。该放大器在8.0~12.0千兆赫的频率范围上在典型噪声系数为5.5分贝(最大为6.9分贝)时增益达到20±1.3分贝。输入和输出端的电压驻波比不超过2.5:1。1分贝增益压缩的最小输出功率为 13分贝毫瓦。讨论了实际的宽带耦合网络的设计,这些网络在整个X波段内使放大器的噪声系数最小并保持恒定的增益。  相似文献   

11.
北美砷化镓会议录论文集中的“用硒离子注入制造砷化镓场效应晶体管”这篇文章介绍了罗克韦尔国际科学中心采用离子注入技术取代外延生长技术形成有源层,制造出接近于理论特性的低噪声砷化镓场效应晶体管。对于栅长0.9微米的器件,论证了增益与频率的特性。结果表明,最大振荡频率超过50千兆赫。在10千兆赫下,典型噪声系数为3.5分贝,而增益为7分贝。经挑选,有些器件,在10千兆赫下,噪声系数可低达3.3分贝,而最大可用增益为11.5分贝左右。J.A.Higgins 等人宣称“对于相同几何图形的 FET,1976年 Hewitt 等人计算出了噪声系数的最佳值为3.5分贝,这就证明离子注入的晶体管与理论预计的特性相符。”  相似文献   

12.
用投影光刻法制出了在6千兆赫下最佳噪声系数为1.6分贝的砷化镓金属-半导体场效应晶体管(GaAs MESFET)。推出了计算最佳噪声系数的公式,得到的计算值和测量值非常一致。引言:本简讯的目的是报导在6千兆赫下测得噪声系数为1.6分贝、可用增益为11分贝的 GaAsMESFET。这种器件,当调至4千兆赫时,最佳噪声系数为1.0分贝。这些噪声系数,现在仍是4千兆赫和6千兆赫下获得的最低值。  相似文献   

13.
利用研制中的硅双极晶体管设计制作了4~5千兆赫频段低噪声晶体管混合集成放大器。实验结果表明,利用这种晶体管制作C波段放大器其性能可满足一定的使用要求。初步结果为:4千兆赫频段两级放大器噪声系数4.5分贝左右,增益10分贝(±1分贝),带宽>500兆赫;5千兆赫频段两级放大器噪声系数6分贝左右。增益10分贝±1分贝),带宽>400兆赫。实验分别是在氧化铝陶瓷衬底和聚四氟乙烯玻璃纤维敷铜板上采用微带电路制作的。  相似文献   

14.
4千兆赫无线电设备用的低噪声放大器已设计成功,并投入生产。其噪声系数≤2分贝,典型增益值是10分贝,输入和输出回波损耗≥25分贝。当电源或低噪声晶体管任何一个失效时,其插入损耗通常为5~8分贝。该放大器采用了把一个砷化镓场效应晶体管与一个利用环型器的无源可靠旁路网络相连接的方法。这种方法可以使噪声系数和增益平坦度对每一个放大器都是最佳状态,而无须对输入和输出匹配进行折衷考虑。可以断定,这种单级晶体管放大器的设计与平衡放大器的设计相比,在性能和简单化方面都具有显著的优点。  相似文献   

15.
本文叙述了用砷化镓肖特基势垒栅场效应晶体管设计两级宽带X波段放大器。扼要地说明了放大器和内部器件的性能。放大器在6.5~12千兆赫频率范围有9.5±1分贝的增益。输入和输出的电压驻波比不超过2.5:1。所述实际宽带匹配网络使放大器总的噪声系数减到最小,并在整个设计带宽内保持恒定的增益,同时计算了寄生、损耗和不均匀电容的影响。  相似文献   

16.
研究了C波段大功率砷化镓场效应晶体管的宽带内匹配技术,结果在电路设计中采用了新型的电路结构和大信号特性。在高介电常数的单瓷片上形成集总参数元件二级输入网络。在氧化铝陶瓷片上,以微带结构形成半分布参数的单级输出电路。总栅宽为11200微米的内匹配砷化镓场效应晶体管在1分贝增益压缩下具有2.5瓦的功率输出,在没有外部匹配的情况下,从4.2到7.2千兆赫,该器件具有5.5分贝的线性增益和4.4瓦的饱和功率输出。从4.5到6.5千兆赫,这种内匹配场效应晶体管具有6分贝线性增益和5瓦的饱和输出功率。  相似文献   

17.
近年来,微波晶体管有了很大的发展,在4千兆赫下噪声系数为2.5分贝的双极晶体管和在8千兆赫下噪声系数为3分贝的砷化镓场效应晶体管已达到实用阶段。另外,在大功率晶体管方面,4千兆赫5瓦,3千兆赫10瓦的器件业已获得。这些器件在制造技术上都使用了接近极限的技术,器件的进步不仅取决于设计技术,还与工艺技术的进步关系极大。今后的微波晶体管的进展考虑非采用亚微米加工那样的新的制造技术不可。  相似文献   

18.
据报导,美国无线电公司采用一层掺铬的高阻砷化镓外延缓冲层作为器件有源区与单晶衬底之间的本体生长衬底之间的隔离,制出了一种革新的中功率砷化镓场效应晶体管(肖特基场效应晶体管)。据称,一个单元的器件在9千兆赫下以1分贝增益压缩,得到了高达300毫瓦的输出功率,5.2分贝的线性增益以及30%的漏极效率。三个单元的器件,在4千兆赫下以1分贝的增益压缩,实现了665毫瓦的输出功率,8分贝的线性  相似文献   

19.
本文介绍 X 波段砷化镓功率场效应晶体管(FET)的测量结果。这些器件是用简单的平面工艺制作的。多个单元并联的器件在9千兆赫下,输出功率大于1瓦,增益大于4分贝。4分贝增益下,最大输出功率在9千兆赫下为1.78瓦,在8千兆赫下为2.5瓦。8千兆赫下,器件功率附加效率为46%。  相似文献   

20.
已经证明高频砷化镓场效应晶体管(GaAsFET)在微波频率下有非常低的噪声系数和高的功率增益。因此对通信和雷达应用的低噪声放大器和接收机来说它们是优秀的候选者。例如,在实验室已做出了在10千兆赫下噪声系数小于4分贝、增益超过10分贝的单级GaAsFET放大器(Liechti等人1972年,Baechtold等人1973年)。场效应晶体管的基本工作原理是由肖克莱(1952年)首先叙述的。他提出了以多数载流子流动为基础的作新型半导体放大器的器件,这种器件不像通常的晶体管那样以少数载流子为基础。肖克莱设想的场效应晶体管是一种包含一电流通路的半导体器件,这  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号