首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Cell formation (CF) consists of identifying machine groups and part families. Many CF procedures use a part machine matrix as an input and attempt to obtain a block diagonal form. But perfect block diagonalization of parts and machines is not possible is many cases. In this paper we consider a generalized cellular manufacturing (CM) problem, in which each part can have alternate process plans and each operation can be performed on alternate machines. Under these conditions the CF problem of assigning parts and machines to each manufacturing cell can be considered as a two stage process. The first stage deals with the problem of determining a unique process plan for each part. The second stage determines the part families and machine cells. In this research a model for forming part families and machine cells is presented considering alternate process plans. The objective is to analyze how alternate process plans influence and enhance the CM process giving better flexibility to the designer while designing cells for CM.  相似文献   

2.
A cellular manufacturing system (CMS) is considered an efficient production strategy for batch type production. A CMS relies on the principle of grouping machines into machine cells and grouping parts into part families on the basis of pertinent similarity measures. The bacteria foraging algorithm (BFA) is a newly developed computation technique extracted from the social foraging behavior of Escherichia coli (E. coli) bacteria. Ever since Kevin M. Passino invented the BFA, one of the main challenges has been employment of the algorithm to problem areas other than those for which the algorithm was proposed. This research work studies the first applications of this emerging novel optimization algorithm to the cell formation (CF) problem considering the operation sequence. In addition, a newly developed BFA-based optimization algorithm for CF based on operation sequences is discussed. In this paper, an attempt is made to solve the CF problem, while taking into consideration the number of voids in the cells and the number of inter-cell travels based on operational sequences of the parts visited by the machines. The BFA is suggested to create machine cells and part families. The performance of the proposed algorithm is compared with that of a number of algorithms that are most commonly used and reported in the corresponding scientific literature, such as the CASE clustering algorithm for sequence data, the ACCORD bicriterion clustering algorithm and modified ART1, and using a defined performance measure known as group technology efficiency and bond efficiency. The results show better performance of the proposed algorithm.  相似文献   

3.
This study develops a methodology for forming machine cells using part's design and manufacturing dissimilarities. The proposed methodology is divided into two sequential phases. In phase I parts are grouped into families based upon their design and manufacturing attributes. In phase II, the machines are grouped into manufacturing cells based on relevant operational costs and the various cells are assigned part families using an optimization technique.  相似文献   

4.
The cellular manufacturing system (CMS) is considered as an efficient production strategy for batch type production. The CMS relies on the principle of grouping machines into machine cells and grouping machine parts into part families based on pertinent similarity measures. The bacteria foraging algorithm (BFA) is a new in development computation technique extracted from the social foraging behavior of Escherichia coli (E. coli) bacteria. Ever since Kevin M. Passino invented the BFA, one of the main challenges has been employment of the algorithm to problem areas other than those for which the algorithm was proposed. This research work inquires the first applications of this emerging novel optimization algorithm to the cell formation (CF) problem. In addition, a newly developed BFA-based optimization algorithm for CF is discussed. In this paper, an attempt is made to solve the cell formation problem meanwhile taking into consideration number of voids in cells and a number of exceptional elements based on operational time of the parts required for processing in the machines. The BFA is suggested to create machine cells and part families. The performance of the proposed algorithm is compared with a number of algorithms that are most commonly used and reported in the corresponding scientific literature such as similarity coefficients methods (SCM), rank order clustering (ROC), ZODIAC, GRAFICS, MST, GATSP, GP, K-harmonic clustering (KHM), K-means clustering, C-link clustering, modified ART1, GA (genetic algorithm), evolutionary algorithm (EA), and simulated annealing (SA) using defined performance measures known as modified grouping efficiency and grouping efficacy. The results lie in favor of better performance of the proposed algorithm.  相似文献   

5.
Productivity optimization of cellular manufacturing systems   总被引:3,自引:0,他引:3  
A two-stage CM productivity model is proposed. In the first stage, a 0–1 integer programming model is developed to design CM system. In this model, part families and machine cells are formed simultaneously. In the second stage, a total productivity model for CM systems is developed to optimize the total productivity of manufacturing cells by further using the unutilized machining time available on various machines. An example problem is illustrated.  相似文献   

6.
The identification of part families and machine groups that form the cells is a major step in the development of a cellular manufacturing system and, consequently, a large number of concepts, theories and algorithms have been proposed. One common assumption for most of these cell formation algorithms is that the product mix remains stable over a period of time. In today’s world, the market demand is being shaped by consumers resulting in a highly volatile market. This has given rise to a new class of products characterized by low volume and high variety. To incorporate product mix changes into an existing cellular manufacturing system many important issues have to be tackled. In this paper, a methodology to incorporate new parts and machines into an existing cellular manufacturing system has been presented. The objective is to fit the new parts and machines into an existing cellular manufacturing system thereby increasing machine utilization and reducing investment in new equipment.  相似文献   

7.
Cell formation is an important problem in the design of a cellular manufacturing system. Most of the cell formation methods in the literature assume that each part has a single process plan. However, there may be many alternative process plans for making a specific part, specially when the part is complex. Considering part multiple process routings in the formation of machine-part families in addition to other production data is more realistic and can produce more independent manufacturing cells with less intercellular moves between them. A new comprehensive similarity coefficient that incorporates multiple process routings in addition to operations sequence, production volumes, duplicate machines, and machines capacity is developed. Also, a clustering algorithm for machine cell formation is proposed. The algorithm uses the developed similarity coefficient to calculate the similarity between machine groups. The developed similarity coefficient showed more sensitivity to the intercellular moves and produced better machine grouping.  相似文献   

8.
Manufacturing cell formation is the first step in the design of cellular manufacturing system. The primary objective of this step is to cluster machines into machine cells and parts into part families so that the minimum of intercell trips will be achieved. This paper will be focused on the configuration of machine cells considering three types of initial machine-part matrix: binary (zero-one) matrix, production volume matrix, and operation time matrix. The similarity measure uses only information from these types of matrix. A pure combinatorial programming formulation will be developed to maximize the sum of similarity coefficients between machine/part pairs. An e-Learning tool/application to help industrial students and engineers for enhancing their cell formation capability is proposed. This tool is designed to include a novel similarity coefficient-based heuristic algorithm for solving the cell formation problem. To determine the performance of the proposed tool, comparison is made with a well-known tool along a case study.  相似文献   

9.
The cellular manufacturing system (CMS) is considered as an efficient production strategy for batch type production. The CMS relies on the principle of grouping machines into machine cells and grouping machine parts into part families on the basis of pertinent similarity measures. The bacteria foraging optimization (BFO) algorithm is a modern evolutionary computation technique derived from the social foraging behavior of Escherichia coli bacteria. Ever since Kevin M. Passino invented the BFO, one of the main challenges has been the employment of the algorithm to problem areas other than those of which the algorithm was proposed. This paper investigates the first applications of this emerging novel optimization algorithm to the cell formation (CF) problem. In addition, for this purpose matrix-based bacteria foraging optimization algorithm traced constraints handling (MBATCH) is developed. In this paper, an attempt is made to solve the cell formation problem while considering cell load variations and a number of exceptional elements. The BFO algorithm is used to create machine cells and part families. The performance of the proposed algorithm is compared with a number of algorithms that are most commonly used and reported in the corresponding scientific literature such as K-means clustering, the C-link clustering and genetic algorithm using a well-known performance measure that combined cell load variations and a number of exceptional elements. The results lie in favor of better performance of the proposed algorithm.  相似文献   

10.
A number of research papers have used different types of similarity and dissimilarity coefficients for determining part families. In cellular manufacturing systems, most machines are capable of performing more than one operation, which makes parts rerouting feasible. When a part is rerouted, it affects the cell performance. Most of the suggested approaches in the literature develop a new similarity coefficient based on mathematical analysis, however, these methods tend to disregard alternative routes during machine failure. The main objective of this paper is to identify part families based on a new similarity coefficient which considers the number of alternative routes available during machine failure. Based on the new similarity coefficient, the part families were identified by using a p-median model.  相似文献   

11.
The conventional way of solving the group technology (GT) problem is to start from an assignment of parts to machines and try to find a partitioning of machine cells and part families. The similarity between parts is measured based on commonality of the machines assigned to them. However, parts are assigned to machines based on their operation requirements and the operation capabilities of machines. Similarity between parts should be based on their required operations. In this paper, the authors attempt to solve or facilitate solving the GT problem at the assignment level. An algorithm for assigning parts to machines is provided which utilizes the types of operations required by parts and applies GT principles in producing the assignment. This leads to better partitioning of machine cells and part-families. Furthermore, operation sequences required by parts in determining the similarity between parts have been considered. An algorithm to form part-families based on the operation sequence similarity coefficient has been developed. The resulting families are then used by the assignment algorithm to produce machine assignments to part-families. The use of the algorithm is demonstrated by examples.  相似文献   

12.
A two-phase procedure for configuring a cellular manufacturing system is proposed. In Phase I, a new similarity coefficient which considers the number of alternative routes when available during machine failure is proposed. The objective of Phase I is to identify part families based on the proposed new similarity coefficient. In Phase II, a new methodology which simultaneously considers scheduling and operational aspects in the cell design during machine failure for a manufacturing environment is proposed. Phase II shows how the scheduling and operational aspects influence the resource utilization during machine failure. The objective of the proposed methodology is to minimize the total sum of inventory holding cost, early/late finish penalty cost for each part in a given period, operating cost and machine investment cost by grouping machines into cells.  相似文献   

13.
This paper discusses the development of a cellular manufacturing system in a manufacturing company. A new clustering algorithm has been applied to the design of the system. The algorithm consists of two parts, a cluster-seeking process and the minimization of bottleneck machines. Two parameters are input by the user: (a) the desired number of machine cells or part families, and (b) the minimum number of parts within each cell or part family. A number of cells have been designed for a preparation shop, a fabrication shop, and a machine shop. Both the advantages and disadvantages of the algorithm have been analyzed, especially concerning its applications to industry.  相似文献   

14.
Cell formation is one of the first and most important steps in designing a cellular manufacturing system. It consist of grouping parts with similar design features or processing requirements into part families and associated machines into machine cells. In this study, a bi-objective cell formation problem considering alternative process routings and machine duplication is presented. Manufacturing factors such as part demands, processing times and machine capacities are incorporated in the problem. The objectives of the problem include the minimization of the total dissimilarity between the parts and the minimization of the total investment needed for the acquisition of machines. A normalized weighted sum method is applied to unify the objective functions. Due to the computational complexity of the problem, a hybrid method combining genetic algorithm and dynamic programming is developed to solve it. In the proposed method, the dynamic programming is implemented to evaluate the fitness value of chromosomes in the genetic algorithm. Computational experiments are conducted to examine the performance of the hybrid method. The computations showed promising results in terms of both solution quality and computation time.  相似文献   

15.
The modified fuzzy art and a two-stage clustering approach to cell design   总被引:1,自引:0,他引:1  
This study presents a new pattern recognition neural network for clustering problems, and illustrates its use for machine cell design in group technology. The proposed algorithm involves modifications of the learning procedure and resonance test of the Fuzzy ART neural network. These modifications enable the neural network to process integer values rather than binary valued inputs or the values in the interval [0, 1], and improve the clustering performance of the neural network. A two-stage clustering approach is also developed in order to obtain an informative and intelligent decision for the problem of designing a machine cell. At the first stage, we identify the part families with very similar parts (i.e., high similarity exists in their processing requirements), and the resultant part families are input to the second stage, which forms the groups of machines. Experimental studies show that the proposed approach leads to better results in comparison with those produced by the Fuzzy ART and other similar neural network classifiers.  相似文献   

16.
Fuzzy-set-based machine-cell formation in cellular manufacturing   总被引:2,自引:0,他引:2  
In cellular manufacturing, manufacturing cells are designed based on the assumption that only one machine is used for a particular operation. However, there can be alternative machines to process an operation. In this article, a fuzzy-set-based machine-cell formation algorithm for cellular manufacturing is presented. The fuzzy logic is employed to express the degree of appropriateness when alternative machines are specified to process a part shape. For machine grouping, the similarity-coefficient-based approach is used. The algorithm produces efficient machine cells and part families, which maximize the similarity values. This algorithm can also be used when the intercellular movement costs should be minimized. A numerical example is given to illustrate this approach.  相似文献   

17.
This paper presents a simulation-based methodology which uses both design and manufacturing attributes to form manufacturing cells. The methodology is implemented in three phases. In phase I, parts are grouped into part families based on their design and manufacturing dissimilarities. In phase II, machines are grouped into manufacturing cells based on relevant operational costs and various cells are assigned part families using an optimization technique. Phases I and II are based on integer and mixed-integer mathematical models. Finally, in phase III, a simulation model of the proposed system is built and verified, and the model is run so that data on the proposed system may be gathered and evaluated. The mathematical and simulation models are used to solve a sample production problem. The results from these models are compared, and can be used to justify the final design. By the use of these modeling tools, cellular manufacturing systems can be designed, analyzed, optimized, and finally justified.  相似文献   

18.
The increasing trend toward computer-integrated manufacturing (CIM) in today's industry created a need for an effective process control. The objective of the inspection process is not only preventing shipment of defective parts but also providing a feedback to keep the manufacturing process in control. Through data processing capability, speed, and flexibility of operation, coordinate measuring machines (CMMs) play an important role for computer-integrated manufacturing (CIM). This paper introduces coordinate measuring machines and studies their performance. A computer simulation method for studying the performance of such machines working in a production line is developed. In this paper, CMM performance is measured by its speed and flexibility in performing measurements. In flexible manufacturing systems (FMS), CMMs serve as the inspection work station where arrival time of parts to be measured vary according to the flow of operations. The developed simulation model provides information about the machine, scheduled time for parts to be measured, and delay time for the measuring process.  相似文献   

19.
Neural network-based design of cellular manufacturing systems   总被引:3,自引:1,他引:2  
A neural network based on a competitive learning rule, when trained with the part machine incidence matrix of a large number of parts, classifies the parts and machines into part families and machine cells, respectively. This classification compares well with the classical clustering techniques. The steady state values of the activations and interconnecting strengths enable easier identification of the part families, machine cells, overlapping parts and bottleneck machines. Neural networks are mostly applied by treating them as a blackbox, i.e. the interaction with the environment and the information acquisition and retrieval occurs at the input and the output level of the network. This paper presents an approach where knowledge is extracted from the external and internal structure of the neural network.  相似文献   

20.
We introduced a spectral clustering algorithm based on the bipartite graph model for the Manufacturing Cell Formation problem in [Oliveira S, Ribeiro JFF, Seok SC. A spectral clustering algorithm for manufacturing cell formation. Computers and Industrial Engineering. 2007 [submitted for publication]]. It constructs two similarity matrices; one for parts and one for machines. The algorithm executes a spectral clustering algorithm on each separately to find families of parts and cells of machines. The similarity measure in the approach utilized limited information between parts and between machines. This paper reviews several well-known similarity measures which have been used for Group Technology. Computational clustering results are compared by various performance measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号