首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gaussian arbitrarily varying channel with input constraint Γ and state constraint Λ admits input sequences x=(x1,---,Xn) of real numbers with Σxi2nΓ and state sequences s=(S1,---,sn ) of real numbers with Σsi2nΛ; the output sequence x+s+V, where V=(V1,---,Vn) is a sequence of independent and identically distributed Gaussian random variables with mean 0 and variance σ2. It is proved that the capacity of this arbitrarily varying channel for deterministic codes and the average probability of error criterion equals 1/2 log (1+Γ/(Λ+σ2)) if Λ<Γ and is 0 otherwise  相似文献   

2.
A random loop, or polygon, is a simple random walk whose trajectory is a simple Jordan curve. The study of random loops is extended in two ways. First, the probability Pn(x,y) that a random n-step loop contains a point (x,y) in the interior of the loop is studied, and (1/2, 1/2) is shown to be (1/2)-(1/ n). It is plausible that Pn(x,y) tends toward 1/2 for all ( x,y), but this is not proved even for (x,y)=(3/2,1/2) A way is offered to simulate random n-step self-avoiding loops. Numerical evidence obtained with this simulation procedure suggests that the probability Pn (3/2,1/2)≈(1/2)-(c/n), for some fixed c   相似文献   

3.
Expressions are obtained for specifying the optimal error probability (minimum Pe) thresholds λ01 and λ02 for the traditional and modified sign detectors, respectively. These thresholds are shown to depend on the parameters p, P1, and M where: M is the number of observations zi used in the test statistic; P1=P(H1 ) is the prior probability for hypothesis H1 that signal s1 is present and 1-P1 =P(H0) corresponds to the hypothesis H0 that signal s0 is present; and p=Pr{zi⩾0|H1} with s0=0 for the traditional sign detector and p=Pr{zi⩾λ|H1 }=Pr{zi<λ|H0} with λ =(s0+s1)/2 for the modified sign detector. The expressions for λ01 and λ02, are given explicitly, and shown to be independent of P1 for sufficiently large M. Optimal Pe versus M performance curves, corresponding to both versions of the sign detector, are obtained for a representative range of values for p and P1  相似文献   

4.
The asymptotic (M→∞) probability of symbol error Pe,m for M-ary orthogonal modulation in a Nakagami-m fading channel is given by the incomplete gamma function P(m, mx) where x=In 2/(Eb/N0) and Eb is the average energy per bit. For large signal-to-noise ratio this leads to a channel where the probability of symbol error varies as the inverse mth power of Eb/N0. These channels exist for all m⩾1/2. The special case of m=1 corresponds to Rayleigh fading, an inverse linear channel  相似文献   

5.
InAlAs/InGaAs HBTs with various emitter junction gradings are simulated using a self-consistent Monte Carlo simulator. The effects of the emitter junction grading and the shift of the emitter-base p-n junction into the emitter depletion region due to diffusion of the base dopant are investigated. A minimum transit time of 1.18 ps is predicted for an In(Ga1-xAlx)As grading with x=0.6 at the E-B interface and JC=0.7×105 A/cm2. Graded-base designs do not offer any transit time performance improvement compared with the graded E-B approach. For transient performance, the device switching time is found to remain constant at about 2.2 ps up to x0~0.7 but increases for larger values. A cutoff frequency as high as 270 GHz was observed for x0=0.7, indicating that the best transport can be achieved from intermediately graded rather than abrupt E-B junction designs  相似文献   

6.
A method is presented for solving the banded Toeplitz system Tx=y by decomposing T into its asymptotic upper and lower triangular factors (which are banded and Toeplitz) and a rank-p correction matrix, where p is the bandwidth of T. This way of representing T requires only O(p2) words of storage and allows computation of x in O(2Np) operations. A similar method is presented for the case in which T is bi-infinite and y is zero outside a finite region  相似文献   

7.
The numerical evaluation of the parabolic cylinder functions D p(z) in two cases is described. Case I is for the argument z=xe-iπ/4, with x real, and the order p=-1/2+iy, with y real. Case II is for z arbitrary, but p an integer. These cases are of special importance in the analysis of wave scattering from a parabolic cylinder. Expressions for Dp(z) are presented which are numerically accurate and efficient  相似文献   

8.
A dispersion formula ϵ*eff(f)=ϵ* -{ϵ**eff(0)}/{1+( f/f50)m}, for the effective relative permittivity ϵ*eff(f) of an open microstrip line is derived for computer-aided design (CAD) use. The 50% dispersion point (the frequency f50 at which ϵ*eff(f50)={ϵ **eff(0)}/2}) is used a normalizing frequency in the proposed formula, and an expression for f50 is derived. To obtain the best fit of ϵ *eff(f) to the theoretical numerical model, the power m of the normalized frequency in the proposed formula is expressed as a function of width-to-height ratio w/ h for w/h⩾0.7 and as a function of w /h, f50, and f for w/h⩽0.7. The present formula has a high degree of accuracy, better than 0.6% in the range 0.1<w/h⩽10, 1<ϵ*⩽128, and any height-to-wavelength ratio h0  相似文献   

9.
10.
A strengthening of the Assmus-Mattson theorem   总被引:1,自引:0,他引:1  
Let w1=d,w2,…,w s be the weights of the nonzero codewords in a binary linear [n,k,d] code C, and let w' 1, w'2, …, w'3, be the nonzero weights in the dual code C1. Let t be an integer in the range 0<t<d such that there are at most d-t weights w'i with 0<w'in-t E. F. Assmus and H. F. Mattson, Jr. (1969) proved that the words of any weight wi in C form a t-design. The authors show that if w2d+4 then either the words of any nonzero weight wi form a (t+1)-design or else the codewords of minimal weight d form a {1,2,…,t,t+2}-design. If in addition C is self-dual with all weights divisible by 4 then the codewords of any given weight wi form either a (t +1)-design or a {1,2,…,t,t+2}-design. The proof avoids the use of modular forms  相似文献   

11.
pin photodiodes with a 2.3 μm absorption edge are presented, using hydride vapour phase epitaxy. A Ga1-yInyAs (y=0.72) absorption layer, lattice-mismatched to the InP substrate, was grown on an InAsxP1-x (x=0-0.33) graded composition buffer layer. Typical dark current was 5 μA (0.03 A/cm2) at -6 V. Effective carrier lifetime of 0.05 μs was estimated from I/V characteristics  相似文献   

12.
The evaluation of the quantization error in two-dimensional (2-D) digital filters involves the computation of the infinite square sum Jm=φΣ ny2 (m, n). A simple method is presented for evaluating J based on partial fraction expansion and using the residue method provided the Z-transform Y(Z1, Z2) of the sequence y(m, n) having quadrant support is a causal bounded input, bounded output (BIBO) stable denominator-separable rational function. The value of J is expressed as a sum of simple integrals which can easily be evaluated. The simple integrals are tabulated for ready reference. The proposed method is suitable for analytical as well as numerical computation and can easily be programmed  相似文献   

13.
A procedure for synthesizing multilayered radar absorbing coatings is presented. Given a predefined set of Nm available materials with frequency-dependent permittivities ∈i(f) and permeabilities μi(f ) (i=1,. . ., Nm), the technique determines simultaneously the optimal material choice for each layer and its thickness. This optimal choice results in a screen which maximally absorbs TM and TE incident plane waves for a prescribed range of frequencies {f1,f2,. . ., f Nf} and incident angles {&thetas;1, &thetas;2,. . .,&thetas;N&thetas;}. The synthesis technique is based on a genetic algorithm. The technique automatically places an upper bound on the total thickness of the coating, as well as the number of layers contained in it, which greatly simplifies manufacturing. In addition, the thickness or surface mass of the coating can be minimized simultaneously with the reflection coefficient. The algorithm was successfully applied to the synthesis of wideband absorbing coatings in the frequency ranges of 0.2-2 GHz and 2-8 GHz  相似文献   

14.
The device consists primarily of several molecular-beam-epitaxy (MBE-) grown GaAs/(AlGa)As resonant tunneling diodes connected in parallel. This device exhibits multiple peaks in the I-V characteristic. When a load resistor is connected, the circuit can be operated in a multiple stable mode. With this concept, implementation of three-state and four-state memory cells are made. In the three-state case the operating points at voltages V0=0.27 V , V1=0.42 V, and V2=0.53 V represent the logic levels 0, 1, and 2. Similarly for the four-state memory cell the logic levels voltages are V0=0.35 V, V1=0.42 V, V2=0.54 V, and V 3=0.59 V. A suggestion of an integrated device structure using this concept is also presented  相似文献   

15.
Quadtree-structured recursive plane decomposition coding of images   总被引:4,自引:0,他引:4  
The approximation of two-dimensional highly correlated grey value functions can be performed using a linear model of the type f( x, y)=a+bx+cy. The set of plane parameters (PPs) [a, b, c] can be determined in the least squares sense for a block of size N×N pixels, for example. Starting with a block size of 2×2 pixels, it is shown that the PPs obey a recursive law such that the PPs of a 2N×2N block can be computed recursively when only the PPs of the four adjacent subblocks of size N×N in the lower decomposition level are known. This concept of recursive plane decomposition (RPD) is embedded in a quadtree data structure to obtain a new variable block size image coding algorithm that offers a high performance at a low computational cost. Extensive comparisons to other state-of-the-art image coding algorithms are reported  相似文献   

16.
A statistical inference problem for a two-terminal information source emitting mutually correlated signals X and Y is treated. Let sequences Xn and Yn of n independent observations be encoded independently of each other into message sets MX and MY at rates R1 and R 2 per letter, respectively. This compression causes a loss of the statistical information available for testing hypotheses concerning X and Y. The loss of statistical information is evaluated as a function of the amounts R1 and R 2 of the Shannon information. A complete solution is given in the case of asymptotically complete data compression, R1, R2→0 as n→∞. It is shown that the differential geometry of the manifold of all probability distributions plays a fundamental role in this type of multiterminal problem connecting Shannon information and statistical information. A brief introduction to the dually coupled e-affine and m-affine connections together with e -flatness and m-flatness is given  相似文献   

17.
A probability density function Pm(R1,R2,Δ) is presented for a narrowband noise process in which R1 and R2 are two envelope samples and Δ is the phase difference. For m=1 the process is Gaussian, but for m=2,3, etc., it is non-Gaussian. New second-order statistical properties are identified for it as well as the density function for the resulting envelope when a signal is added to the noise. These results are given, though the major concern is with the density of the phase difference Δ and the density of &thetas;, the response of an FM detector fed with the noise  相似文献   

18.
The author presents a simple time-domain model which makes it possible to predict the order of magnitude of the highest di/ dt values generated by closing switches in electrical power systems. The model is based on traveling-wave analysis. It is demonstrated that two different approaches must be applied, according to whether (a) the closing time, Ts, of the switch is faster than twice the traveling time to the first reflection point or (b) Ts is much slower. Under condition (b) the well-known quasistationary approach di/dtmax=U0/L can be used, where U0 is the switched voltage and L is the self-inductance of the line between the stray capacitances located to the left and the right of the switching device. Under condition (a) a new formula must be applied: di/dt max≈2 U0/ZTs, where Z is the line impedance of the line in which the switching device is installed and Ts is the time during which the voltage across the switch collapses from U0 to zero. Experimental results are given from both fast and slow closing switches  相似文献   

19.
The authors consider the problem of bounding the information capacity of saturation recording. The superposition channel with additive Gaussian noise is used as a model for recording. This model says that for a saturation input signal, x(t) (i.e., one that can assume only one of two levels), the output can be expressed as y(t)=x˜(t)+z(t ) where x˜(t) is a filtered version of the input x(t) and z(t) is additive Gaussian noise. The channel is described by the impulse response of the channel filter, h(t), and by the autocorrelation function of the noise. A specific example of such a channel is the differentiated Lorentz channel. Certain autocorrelation and spectrum expressions for a general Lorentz channel are derived. Upper and lower bounds on the capacity of saturation recording channels are described. The bounds are explicitly computed for the differentiated Lorentz channel model. Finally, it is indicated how the derived bounds can be applied in practice using physical measurements from a recording channel  相似文献   

20.
Au Schottky barrier heights on molecular-beam-epitaxial grown n-GaAs1-xSbx/N-GaAs heterostructures with x up to 0.26 have been studied. It was found that φbn=0.9-1.77x+2.89x2, or φbn≈0.77Eg-0.20 for x<0.26. The pinning position of the Fermi level with respect to the valence-band edge for x<0.26 takes the form of E pin=-0.52x+0.53 eV, which also appears to be valid for an x value up to 1.0  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号