首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for the generation of software tunable patterns of nanosecond electrical pulses. The bipolar, high repetition rate (up to 250 MHz), fast rise time (<30 ps), square pulses are suitable for applications such as the excitation sequence in dynamic pump-probe experiments. Synchronization with the time structure of a synchrotron facility is possible as well as fine control of the relative delay in steps of 10 ps. The pulse generator described here is used to excite magnetic nanostructures with current pulses. Having an excitation system which can match the high repetition rate of a synchrotron allows for utilization of the full x-ray flux and is needed in experiments which require a large photon flux. The fast rise times allow for picosecond time resolution in pump-probe experiments. All pulse pattern parameters are configurable by software.  相似文献   

2.
Here, we report on a novel experimental apparatus for performing time-resolved soft x-ray absorption spectroscopy in the sub-ns time scale using non-hybrid multi-bunch mode synchrotron radiation. The present setup is based on a variable repetition rate Ti:sapphire laser (pump pulse) synchronized with the ~500 MHz x-ray synchrotron radiation bunches and on a detection system that discriminates and singles out the significant x-ray photon pulses by means of a custom made photon counting unit. The whole setup has been validated by measuring the time evolution of the L(3) absorption edge during the melting and the solidification of a Ge single crystal irradiated by an intense ultrafast laser pulse. These results pave the way for performing synchrotron time-resolved experiments in the sub-ns time domain with variable repetition rate exploiting the full flux of the synchrotron radiation.  相似文献   

3.
We describe our implementation of a high repetition rate (54 kHz-6.5 MHz), high power (>10 W), laser system at the 7ID beamline at the Advanced Photon Source for laser pump/x-ray probe studies of optically driven molecular processes. Laser pulses at 1.06 μm wavelength and variable duration (10 or 130 ps) are synchronized to the storage ring rf signal to a precision of ~250 fs rms. Frequency doubling and tripling of the laser radiation using nonlinear optical techniques have been applied to generate 532 and 355 nm light. We demonstrate that by combining a microfocused x-ray probe with focused optical laser radiation the requisite fluence (with <10 μJ/pulse) for efficient optical excitation can be readily achieved with a compact and commercial laser system at megahertz repetition rates. We present results showing the time-evolution of near-edge x-ray spectra of a well-studied, laser-excited metalloporphyrin, Ni(II)-tetramesitylporphyrin. The use of high repetition rate, short pulse lasers as pump sources will dramatically enhance the duty cycle and efficiency in data acquisition and hence capabilities for laser-pump/x-ray probe studies of ultrafast structural dynamics at synchrotron sources.  相似文献   

4.
We present the extension of time-resolved optical pump/x-ray absorption spectroscopy (XAS) probe experiments towards data collection at MHz repetition rates. The use of a high-power picosecond laser operating at an integer fraction of the repetition rate of the storage ring allows exploitation of up to two orders of magnitude more x-ray photons than in previous schemes based on the use of kHz lasers. Consequently, we demonstrate an order of magnitude increase in the signal-to-noise of time-resolved XAS of molecular systems in solution. This makes it possible to investigate highly dilute samples at concentrations approaching physiological conditions for biological systems. The simplicity and compactness of the scheme allows for straightforward implementation at any synchrotron beamline and for a wide range of x-ray probe techniques, such as time-resolved diffraction or x-ray emission studies.  相似文献   

5.
The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (~2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.  相似文献   

6.
A versatile optical setup for all-terahertz (THz) time resolved pump-probe spectroscopy was designed and tested. By utilizing a dual THz pulse generator emitter module, independent and synchronized THz radiation pump and probe pulses were produced, thus eliminating the need for THz beam splitters and the limitations associated with their implementation. The current THz setup allows for precise control of the electric fields splitting ratio between the THz radiation pump and probe pulses, as well as in-phase, out-of-phase, and polarization dependent pump-probe spectroscopy. Since the present THz pump-probe setup does not require specialized THz radiation optical components, such as phase shifters, polarization rotators, or wide bandwidth beam splitters, it can be easily implemented with minimal alterations to a conventional THz time domain spectroscopy system. The present setup is valuable for studying the time dynamics of THz coherent phenomena in solid-state, chemical, and biological systems.  相似文献   

7.
Recent progress in high intensity ultrafast laser systems provides the opportunity to produce laser plasma x-ray sources exhibiting broad spectrum and high average x-ray flux that are well adapted to x-ray absorption measurements. In this paper, the development of a laser based x-ray absorption near edge structure (XANES) beamline exhibiting high repetition rate by using the Advanced Laser Light Source (ALLS) facility 100 Hz laser system (100 mJ, 35 fs at 800 nm) is presented. This system is based on a broadband tantalum solid target soft x-ray source and a grazing incidence grating spectrometer in the 1-5 nm wavelength range. To demonstrate the high potential of this laser based XANES technique in condensed matter physics, material science, or biology, measurements realized with several samples are presented: VO2 vanadium L edge, Si3N4 nitrogen K edge, and BPDA/PPD polyimide carbon K edge. The characteristics of this laser based beamline are discussed in terms of brightness, signal to noise ratio, and compared to conventional synchrotron broadband x-ray sources which allow achieving similar measurements. Apart from the very compact size and the relative low cost, the main advantages of such a laser based soft x-ray source are the picosecond pulse duration and the perfect synchronization between this x-ray probe and a laser pulse excitation which open the way to the realization of time resolved x-ray absorption measurements with picosecond range time resolution to study the dynamics of ultrafast processes and phase transition.  相似文献   

8.
We describe a momentum imaging setup for direct time-resolved studies of ionization-induced molecular dynamics. This system uses a tabletop ultrafast extreme-ultraviolet (EUV) light source based on high harmonic upconversion of a femtosecond laser. The high photon energy (around 42 eV) allows access to inner-valence states of a variety of small molecules via single photon excitation, while the sub--10-fs pulse duration makes it possible to follow the resulting dynamics in real time. To obtain a complete picture of molecular dynamics following EUV induced photofragmentation, we apply the versatile cold target recoil ion momentum spectroscopy reaction microscope technique, which makes use of coincident three-dimensional momentum imaging of fragments resulting from photoexcitation. This system is capable of pump-probe spectroscopy by using a combination of EUV and IR laser pulses with either beam as a pump or probe pulse. We report several experiments performed using this system.  相似文献   

9.
A photodiode and data acquisition card whose sampling clock is synchronized to the repetition rate of a laser are used to measure the energy of each laser pulse. Simple analysis of the data yields the noise spectrum from very low frequencies up to half the repetition rate and quantifies the pulse energy distribution. When two photodiodes for balanced detection are used in combination with an optical modulator, the technique is capable of detecting very weak pump-probe signals (ΔI/I(0) ~ 10(-5) at 1 kHz), with a sensitivity that is competitive with a lock-in amplifier. Detection with the data acquisition card is versatile and offers many advantages including full quantification of noise during each stage of signal processing, arbitrary digital filtering in silico after data collection is complete, direct readout of percent signal modulation, and easy adaptation for fast scanning of delay between pump and probe.  相似文献   

10.
We have developed an instrument for optically measuring carrier dynamics in thin-film materials with approximately 150 nm lateral resolution, approximately 250 fs temporal resolution and high sensitivity. This is accomplished by combining an ultrafast pump-probe laser spectroscopic technique with a near-field scanning optical microscope. A diffraction-limited pump and near-field probe configuration is used, with a novel detection system that allows for either two-colour or degenerate pump and probe photon energies, permitting greater measurement flexibility than that reported in earlier published work. The capabilities of this instrument are proven through near-field degenerate pump-probe studies of carrier dynamics in GaAs/AIGaAs single quantum well samples locally patterned by focused ion beam (FIB) implantation. We find that lateral carrier diffusion across the nanometre-scale FIB pattern plays a significant role in the decay of the excited carriers within approximately 1 microm of the implanted stripes, an effect which could not have been resolved with a far-field system.  相似文献   

11.
A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of ~8 to ~120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses or pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.  相似文献   

12.
A femtosecond pulsed laser system has been installed at the BL25SU soft x-ray beamline at SPring-8 for time-resolved pump-probe experiments with synchronization of the laser pulses to the circularly polarized x-ray pulses. There are four different apparatuses situated at the beamline; for photoemission spectroscopy, two-dimensional display photoelectron diffraction, x-ray magnetic circular dichroism (XMCD) with electromagnetic coils, and photoelectron emission microscopy (PEEM). All four can be used for time-resolved experiments, and preliminary investigations have been carried out using the PEEM apparatus to observe magnetization dynamics in combination with XMCD. In this article, we describe the details of the stroboscopic pump-probe XMCD-PEEM experiment, and present preliminary data. The repetition rate of the laser pulses is set using a pulse selector to match the single bunches of SPring-8's hybrid filling pattern, which consists of several single bunches and a continuous bunch train. Electrons ejected during the bunch train, which do not provide time-resolved signal, are eliminated by periodically reducing the channel plate voltage using a custom-built power supply. The pulsed laser is used to create 300 ps long magnetic field pulses, which cause magnetic excitations in micron-sized magnetic elements which contain magnetic vortex structures. The observed frequency of the motion is consistent with previously reported observations and simulations.  相似文献   

13.
We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.  相似文献   

14.
The full characterization of a time resolved x-ray spectrometer is presented. It is based on the coupling of a conical crystal with a subpicosecond x-ray streak camera. The detector is designed to operate in accumulation mode at high repetition rate (up to 1 kHz) allowing signal to noise ratio as high as 10(4):1. Optical switches have been used to limit the jitter induced in the subpicosecond range, demonstrating the very long term stability (a few hours) of the entire device. The data analysis have been developed to get the spectral and temporal resolution of an ultrashort laser-plasma-based x-ray source.  相似文献   

15.
We present a setup for ultrafast x-ray diffraction (UXRD) based at the storage ring BESSY II, in particular, a pump laser that excites the sample using 250 fs laser-pulses at repetition rates ranging from 208 kHz to 1.25 MHz. We discuss issues connected to the high heat-load and spatio-temporal alignment strategies in the context of a UXRD experiment at high repetition rates. The spatial overlap between laser pump and x-ray probe pulse is obtained with 10 μm precision and transient lattice changes can be recorded with an accuracy of δa/a(0) = 10(-6). We also compare time-resolved x-ray diffraction signals from a laser excited LSMO/STO superlattice with phonon dynamics simulations. From the analysis we determine the x-ray pulse duration to 120 ps in standard operation mode and below 10 ps in low-α mode.  相似文献   

16.
We report on the design, construction, and operation of a horizontal field, 30 T magnet system with a conical bore optimized for synchrotron x-ray powder diffraction. The magnet offers ±31° optical access downstream of the sample, which allows to measure a sufficiently large number of Debye rings for an accurate crystal structure analysis. Combined with a 290 kJ generator, magnetic field pulses of 60 ms length were generated in the magnet, with a rise time of 4.1 ms and a repetition rate of 6 pulses/h at 30 T. The coil is mounted inside a liquid nitrogen bath. A liquid helium flow cryostat reaches into the coil and allows sample temperature between 5 and 250 K. The setup was used on the European Synchrotron Radiation Facility beamlines ID20 and ID06.  相似文献   

17.
In order to record x-ray pulse profile for x-ray pulsar-based navigation and timing, this paper presents a continuous, high-precision method for measuring arrival times of photon sequence with a common starting point. In this method, a high stability atomic clock is counted to measure the coarse time of arrival photon. A high resolution time-to-digital converter is used to measure the fine time of arrival photon. The coarse times and the fine times are recorded continuously and then transferred to computer memory by way of memory switch. The pulse profile is obtained by a special data processing method. A special circuit was developed and a low-level x-ray pulse profile measurement experiment system was setup. The arrival times of x-ray photon sequence can be consecutively recorded with a time resolution of 500 ps and the profile of x-ray pulse was constructed. The data also can be used for analysis by many other methods, such as statistical distribution of photon events per time interval, statistical distribution of time interval between two photon events, photon counting histogram, autocorrelation and higher order autocorrelation.  相似文献   

18.
An ultra-high-precision clock system for long time delay has been developed for picosecond time-resolved x-ray diffraction measurements using synchrotron radiation (SR) pulses and synchronized femtosecond laser pulses. The time delay control between pump laser pulse and the probe SR pulse was achieved by combining an in-phase quadrature modulator and a synchronous counter. This method allowed us to change the delay time by a nearly infinite amount while maintaining the precision of +/-8.40 ps. Time-resolved diffraction measurements using the delay control system were demonstrated for precise measurement of an acoustic velocity in a single crystal of gallium arsenide.  相似文献   

19.
High-speed asynchronous optical sampling (ASOPS) is a novel technique for ultrafast time-domain spectroscopy (TDS). It employs two mode-locked femtosecond oscillators operating at a fixed repetition frequency difference as sources of pump and probe pulses. We present a system where the 1 GHz pulse repetition frequencies of two Ti:sapphire oscillators are linked at an offset of Deltaf(R)=10 kHz. As a result, their relative time delay is repetitively ramped from zero to 1 ns within a scan time of 100 micros. Mechanical delay scanners common to conventional TDS systems are eliminated, thus systematic errors due to beam pointing instabilities and spot size variations are avoided when long time delays are scanned. Owing to the multikilohertz scan-rate, high-speed ASOPS permits data acquisition speeds impossible with conventional schemes. Within only 1 s of data acquisition time, a signal resolution of 6 x 10(-7) is achieved for optical pump-probe spectroscopy over a time-delay window of 1 ns. When applied to terahertz TDS, the same acquisition time yields high-resolution terahertz spectra with 37 dB signal-to-noise ratio under nitrogen purging of the spectrometer. Spectra with 57 dB are obtained within 2 min. A new approach to perform the offset lock between the two femtosecond oscillators in a master-slave configuration using a frequency shifter at the third harmonic of the pulse repetition frequency is employed. This approach permits an unprecedented time-delay resolution of better than 160 fs. High-speed ASOPS provides the functionality of an all-optical oscilloscope with a bandwidth in excess of 3000 GHz and with 1 GHz frequency resolution.  相似文献   

20.
X-ray phase-contrast radiography and tomography enable to increase contrast for weakly absorbing materials. Recently, x-ray grating interferometers were developed that extend the possibility of phase-contrast imaging from highly brilliant radiation sources like third-generation synchrotron sources to non-coherent conventional x-ray tube sources. Here, we present the first installation of a three grating x-ray interferometer at a low-coherence wiggler source at the beamline W2 (HARWI II) operated by the Helmholtz-Zentrum Geesthacht at the second-generation synchrotron storage ring DORIS (DESY, Hamburg, Germany). Using this type of the wiggler insertion device with a millimeter-sized source allows monochromatic phase-contrast imaging of centimeter sized objects with high photon flux. Thus, biological and materials-science imaging applications can highly profit from this imaging modality. The specially designed grating interferometer currently works in the photon energy range from 22 to 30 keV, and the range will be increased by using adapted x-ray optical gratings. Our results of an energy-dependent visibility measurement in comparison to corresponding simulations demonstrate the performance of the new setup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号