首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in microfluidic devices put a high demand on small, robust and reliable pumps suitable for high-throughput applications. Here we demonstrate a compact, low-cost, directly attachable (clip-on) electroosmotic pump that couples with standard Luer connectors on a microfluidic device. The pump is easy to make and consists of a porous polycarbonate membrane and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrodes. The soft electrode and membrane materials make it possible to incorporate the pump into a standard syringe filter holder, which in turn can be attached to commercial chips. The pump is less than half the size of the microscope slide used for many commercial lab-on-a-chip devices, meaning that these pumps can be used to control fluid flow in individual reactors in highly parallelized chemistry and biology experiments. Flow rates at various electric current and device dimensions are reported. We demonstrate the feasibility and safety of the pump for biological experiments by exposing endothelial cells to oscillating shear stress (up to 5 dyn/cm2) and by controlling the movement of both micro- and macroparticles, generating steady or oscillatory flow rates up to ± 400 μL/min.  相似文献   

2.
The zone electrophoresis of protein in poly(dimethylsiloxane) (PDMS) microchip coated with the physically adsorbed amphiphilic phospholipid polymer (PMMSi) was investigated. PMMSi was composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 3-(methacryloyloxy) propyltris (trimethylsiloxy) silane (MPTSSi) units in a random fashion. The membrane of PMMSi can be formed on the PDMS surface by a simple and quick dip-coating method. The membrane showed high hydrophilicity and good stability in water, as determined by contact angle measurement, fourier-transformed infrared absorption by attenuated total reflection (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. High suppression of protein adsorption to the PDMS surface and reduction in electroosmotic flow (EOF) were achieved by PMMSi coating due to an increase of hydrophilicity, and a decrease of the ζ-potential on the surface of PDMS. For zone electrophoresis, the PMMSi30 containing 30 % hydrophilic MPC was the most suitable molecular design in terms of the stability of the coated membrane on PDMS surface. The average value of EOF mobility of PDMS microchip coated with PMMSi30 was 1.4 × 10?4 cm2 V?1 s?1, and the RSD was 4.1 %. Zone electrophoresis of uranine was further demonstrated with high repeatability and reproducibility. Separation of two FITC-labeled proteins (BSA and insulin) was performed with high efficiency and resolution compared with non-treated PDMS microchip.  相似文献   

3.
We report here the fabrication of a new miniature fuel cell for nomadic applications and chip-scale power supply based on a Nafion®-filled porous silicon self-supported membrane. Combining advantages of Nafion® for its great proton conduction and silicon for an easier integration and standard microfabrication techniques, this solution enables the integration of gas feed and electrical contacts into the membrane etching process thanks to simple KOH wet etching processes and metal sputterings. The encapsulation is also possible. Compared to simple Nafion® membranes, this technique may reduce the lateral water diffusion through the membrane. Experiments have been carried out at room temperature and gas feed H2 is provided by the electrolysis of a NaOH solution. A long-term power density of 18 mW cm?2 has been achieved after stabilization with a maximum current density of 101 mA cm?2 and an open circuit voltage of 0.8 V.  相似文献   

4.
Traceable and accurate measurements are critical in many areas where syringe pumps are used to provide microscale liquid flow. Especially, drug delivery demands for low flow rate calibrations have been increasing, but currently available calibration methods are very limited in range and accuracy at flow rates below 100 μl min?1. This paper presents a new hygrometer-based method for the calibration of syringe pumps providing traceability down to the 0.1 μl min?1 level. In this method, liquid water from the syringe pump under calibration is injected into a porous cloth from which it evaporates and mixes with a dry gas flow. By measuring the humidity, temperature, pressure and flow rate of the gas, the injected water flow rate can be calculated. To test the method, a calibration set-up was constructed and a syringe pump was calibrated at flow rates from 0.1 to 10 μl min?1. A thorough uncertainty analysis carried out as a part of the work shows that a relative uncertainty of 0.4 % (at 95 % confidence level) is achieved at the largest calibration flow rate. The uncertainty increases to 3.3 % towards low end of the flow rate range. The achieved uncertainty level is significantly better than achieved with gravimetric methods so far.  相似文献   

5.
Traditional microfluidic paper-based analytical devices (μPADs) consist of a flat straight channel printed on a paper substrate. Such devices provide a promising low-cost solution for a variety of biomedical assays. However, they have a relatively high sample consumption due to their use of external reservoirs. Moreover, in μPADs based on the ion concentration polarization (ICP) effect, controlling the cross-sectional area of the Nafion membrane relative to that of the hydrophilic channel is difficult. Accordingly, the present study utilizes an origami technique to create a μPAD with a three-dimensional (3D) structure. The μPAD features short channels and embedded reservoirs, and therefore reduces both the driving voltage requirement and the sample consumption. Moreover, the preconcentration effect is enhanced through the use of an additional hydrophilic area adjacent to the Nafion membrane. The existence of electroosmotic flow (EOF) within the proposed device is confirmed using a current-monitoring method. In addition, the occurrence of ICP is evaluated by measuring the current–voltage response of the device at external voltages ranging from 0 to 50 V. The experimental results obtained for a fluorescein sample with an initial concentration of 10?5 M show that a 100-fold enhancement factor can be achieved given the use of a non-uniform-geometry design for the assay channel and an additional hydrophilic region with an area equal to approximately 10% of the channel cross-sectional area. Finally, a 100-fold factor can also be achieved for a fluorescein isothiocyanate sample with an initial concentration of 10?6 M given an external driving voltage of 40 V.  相似文献   

6.
This work reports the development and the characterization of a microthermoelectric generator (μTEG) based on planar technology using electrochemically deposited constantan and copper thermocouples on a micro machined silicon substrate with a SiO2/Si3N4/SiO2 thermally insulating membrane to create a thermal gradient. The μTEG has been designed and optimized by finite element simulation in order to exploit the different thermal conductivity of silicon and membrane in order to obtain the maximum temperature difference on the planar surface between the hot and cold junctions of the thermocouples. The temperature difference was dependent on the nitrogen (N2) flow velocity applied to the upper part of the device. The fabricated thermoelectric generator presented maximum output voltage and power of 118 mV/cm2 and of 1.1 μW/cm2, respectively, for a device with 180 thermocouples, 3 kΩ of internal resistance, and under a N2 flow velocity of 6 m/s. The maximum efficiency (performance) was 2 × 10?3 μW/cm2 K2.  相似文献   

7.
Microelectrode arrays (MEA) have become an established tool in applied and fundamental research. Low impedance at the interface between tissue and conducting electrodes is of utmost importance for the electrical recording or stimulation of electrophysiological active cells such as cardiac myocytes and neurons. A common way to improve this interface is to increase the electrochemically active surface area of the electrode. In this paper the fabrication of microelectrodes covered with very high aspect ratio (AR > 100) gold nanopillars is presented and electrode biocompatibility is investigated using cell culture experiments. The nanopillar electrodes show decreased impedance over the entire scanned frequency range of 1 Hz–100 kHz and an impedance improvement of up to 89.5 at 1 kHz depending on nanopillar height. Neurons adhere well to the substrate and electrodes and signals with amplitudes up to ten times higher than with conventional gold electrodes were recorded in cell culture experiments.  相似文献   

8.
The preliminary analysis of agricultural water productivity (AWP) over India using satellite data were investigated through productivity mapping, water use (actual evapotranspiration (ETa)/effective rainfall (Reff) mapping and water productivity mapping. Moderate Resolution Imaging Spectroradiometer data was used for generating agricultural land cover (MCD12Q1 at 500 m), gross primary productivity (GPP; MOD17A2 at 1 km), and ETa (MOD16A2 at 1 km). Reff was estimated at 10 km using the United States Department of Agriculture soil conservation service method from daily National Oceanic and Atmospheric Administration Climate Prediction Center rainfall data. Six years’ (2007–2012) data were analysed from June to October. The seasonal AWP and rainwater productivity (RWP) were estimated using the ratios of seasonal GPP (kg C m?2) and water use (mm) maps. The average AWP and RWP ranges from 1.10–1.30 kg Cm?3 and 0.94–1.0 kg C m?3, respectively, with no significant annual variability but a wide spatial variability over India. The highest AWP was observed in northern India (1.22–1.80 kg C m?3) and lowest in western India (0.81–1.0 kg C m?3). Large variations in AWP (0.69–1.80 kg C m?3) were observed in Himachal Pradesh, Jammu and Kashmir, northeastern states (except Assam), Kerala, and Uttaranchal. The low GPP of these areas (0.0013–0.13 kg C m?2) with low seasonal total ETa (<101 mm) and Reff (<72 mm) making the AWP high that do not correspond to high productivity but possible water stress. Gujarat, Rajasthan, Maharashtra, Madhya Pradesh, Jharkhand, and Karnataka showed low AWP (0.73–1.13 kg C m?3) despite having high ETa (261–558 mm) and high Reff (287–469 mm), indicating significant scope for improving productivity. The highest RWP was observed in northern parts and Indo-Gangetic plains (0.80–1.6 kg C m?3). The 6 years’ analysis reveals the status of AWP, leading to appropriate interventions to better manage land and water resources, which have great importance in global food security analysis.  相似文献   

9.
This paper describes the improvement of bi-directional micropump velocity by deposition of a hydrophobic nanocomposite monolayer. A polymer base nanocomposite coating consisting of a homogeneous mixture of silicon nanoparticles in polydimethylsiloxane (PDMS) is used to improve the hydrophobicity of the micropump surfaces. For hydrophobic nature of PDMS and the monolayer coating with nanoscale surface roughness, the hydrophilic surface of a biased AC electroosmotic micropump will transform to a hydrophobic surface. In our previous research the applied AC voltage, frequency, channel dimension, and electrode width were optimized (Islam and Reyna, Electrophoresis 33(7), 2012). Based on the prior results obtained for the biased AC electroosmotic micropump, the pumping velocity was 300 micron/s in 100-μm channel thickness for applied voltage of 4.4 V at 1 kHz frequency. Here in this work, improvement of the micropump velocity is investigated through a surface modification process. The highest velocity of 450 micron/s is observed by modifying the surface characteristics. This paper will also discuss the synthesis process and characteristics of the polymer base nanocomposite monolayer. In addition to hydrophobicity improvement, adding a thin nanocomposite monolayer will physically separate the electrodes from the pumping liquid, thus eliminating their reaction, which is usually observed due to the application of voltage. As a result, higher voltages can be applied to the electrodes and higher pumping rates are achievable.  相似文献   

10.
The day/night band (DNB) of the Visible Infrared Imaging Radiometer Suite can not only identify surface characteristics when illuminated by moonlight, but can also detect night-time radiation from ground active light sources. Accordingly, the low-light sensor can be calibrated by comparing upward active radiation with actual observed digital counts, which has attracted new research interest. In this article, the first attempt to calibrate the high-gain stage of the DNB using a specialized ground light source was introduced. The DNB imaging rule of the target pixel at various observation geometries was analysed based on the long-term monitoring of a light source set in Dunhuang, Gansu Province, China. The radiance caused by emissive radiation varied greatly over time in a 16-day cycle. To solve the major problem of the Dunhuang light source when used for low-light calibration, a light source that emits homogenous radiation intensity in most upward directions was custom designed. Based on this device, a comprehensive low-light calibration scheme was proposed and three verification experiments were performed in Mingguang, Anhui Province, China. The predicted in-band DNB at-aperture radiance values of the 3-day experiments were 3.86 × 10?9, 4.38 × 10?9, and 5.27 × 10?9 W cm?2 sr?1, respectively, while the actual observed DNB radiance values were 4.53 × 10?9, 5.06 × 10?9, and 5.57 × 10?9 W cm?2 sr?1, respectively. With deviations of 14.8%, 13.4%, and 5.4%, respectively, the calibration result based on the specialized light source was generally in good agreement with the operational calibration result, and thus the feasibility of the device for low-light calibration had been preliminarily verified.  相似文献   

11.
A microfluidic chip for the chemiluminescence detection of cobalt (II) in water samples, based on the measurement of light emitted from the cobalt (II) catalysed oxidation of luminol by hydrogen peroxide in basic aqueous solution, is presented. The microfluidic chip was designed and fabricated from polydimethylsiloxane using micro-molding method. Optimized reagents conditions were found to be 5.0 × 10?4 mol/L luminol, 1.0 × 10?2 mol/L hydrogen peroxide, and 8.0 × 10?2 mol/L sodium hydroxide. The system can perform fully automated detection with a reagent consumption of only 2.4 μL each time. The linear range of the cobalt (II) ions concentration was 1.0 × 10?10–1.0 × 10?3 mol/L and the detection limit was 5.6 × 10?11 mol/L with the S/N ratio of 3. The relative standard deviation was 4.6 % for 1.0 × 10?5 mol/L cobalt (II) ions (n = 10).  相似文献   

12.
In this study, we deal with observations of aerosol column content (height integration of vertical distribution of aerosol number density) that have been carried out using an Ar+ lidar for three different measurement cycles (each cycle consisting of three experimental days associated with non-rain, rain, and non-rain, respectively) of weekly spaced observations for pre-monsoon (March/April 1994), monsoon (September 1991), and post-monsoon (October 1998). Based on these observed profiles of aerosol number concentration on rainy days with respect to those on non-rainy days, vertical distributions of scavenging collection efficiencies (SCEs) are computed and discussed in this article. The SCE is found to decrease from 0.3 to 0.01 between the heights, 100 and 800 m for thunderstorm rain in April 1994, and during monsoon, it increases from 0.1 to 0.7. In the October 1998 episode, SCE was found to increase initially from 0.35 to 0.75 for heights between 40 and 200 m and thereafter decrease to 0.35 in the height interval of 200–800 m. For the rainfall intensity increase from 1 to 10 mm hour?1, the corresponding scavenging coefficient (SC) for atmospheric layer 50–100 m varies from 4 × 10?6 to 4 × 10?5 s?1 for thunderstorm in April 1994 and between 5 × 10?6 and 5 × 10?5 s?1 in October 1998, respectively. During monsoon, these values vary from 3 × 10?5 to 5 × 10?4 s?1. They lie in the range of those observed in the earlier field studies. The results are found useful to establish links between aerosols and cloud properties, and the influence of such interactions on weather and climate.  相似文献   

13.
The application of chip-based microcapillary electrophoresis (µCE) to determine the electrophoretic mobility of molecules and particles has been intensively studied in the last two decades. Balancing the hydrostatic pressure between both ends of the microchannel is essential for free-zone electrophoresis and highly accurate measurement. This balancing operation appears simple on a macroscale (e.g., >?10?3 m); however, on a microscale (e.g., 10?6–10?3 m), it is not straightforward because of the complexity of the interface dynamics at the meniscus. The hydrostatic pressure flow is unstable because of the small size of the microchannel, which is smaller than a single droplet of water. In this study, a µCE chip design was proposed by adding an extra bypass channel to balance the fluid level of the two open reservoirs and inhibit the generation of hydrostatic pressure flow within the microchannel. The fluid behaviors in the microchannel and current and voltage (IV) characterization were experimentally studied. In addition, a numerical simulation of the electroosmotic flow and hydrostatic flow in the µCE chip was performed. The comparison between the µCE chip with and without the bypass channel showed that the bypass channel did not produce a disturbance in the microchannel for the electrophoretic measurement. The simple microchannel design enabled autonomous compensation of the hydrostatic pressure from the instability of the meniscus, and thus improved the usability of the chip-based µCE chip and the accuracy in the electrophoretic measurement.  相似文献   

14.
This paper presents the design, fabrication and reliability testing of a double spiral platinum-based MEMS hotplate for gas sensing applications. The structure of MEMS hotplate consists of a 0.7 µm-thick thermally grown SiO2 membrane of size 120 µm × 120 µm over which a double spiral platinum resistor is laid out. The hotplate membrane is supported by its four arms connected to the Si-substrate. The design and simulation of the hotplate structure was carried out using MEMS-CAD Tool COVENTORWARE. Based on the design, a double spiral platinum resistor of 103 Ω is fabricated on SiO2 membrane using lift-off technique. The platinum deposition is carried out using DC sputtering technique. Bulk micromachining of Si is done from front side of the structure to create the suspended SiO2 membrane. The temperature coefficient of resistance (TCR) of platinum is measured and found to be 2.19 × 10?3/ °C. The TCR value is used for temperature estimation of the hotplate. The test results show that the microhotplate consumes only 20 mW power when heated up to 500 °C. For reliability testing of fabricated structure, the hotplate is continuously operated at 300 °C for 1.8 h. Also, it can sustain at least 61 cycles pulse-mode operation at 530 °C with ultra-low resistance and temperature drifts. The structure can sustain a maximum temperature and current of 611 °C and 11.55 mA respectively without any damage.  相似文献   

15.
Transdermal extraction of interstitial fluid (ISF) offers an attractive method for non-invasive blood glucose monitoring. In order to calculate blood glucose concentration accurately, precise volume measurement of transdermally extracted ISF is required due to human skin’s varying permeability. In this paper, we presented a novel flow sensor fabricated from polydimethylsiloxane (PDMS), designed to measure the volume of conductive liquid. The flow sensor consists of two pairs of metal electrodes, which are fabricated in the PDMS channel. The volume of liquid is measured utilizing the time-of-flight of the two electrode pairs’ resistance while the liquid is flowing through the flow sensor. 1–14 μL normal saline solution was measured, the flow sensor measured volumes correlate very well (R 2 = 0.9996 and R 2 = 0.9975 for vacuum pump and syringe pump situations respectively) with the actual volumes. And the coefficient of variation for 10 times 10 μL normal saline solution measurement is 0.0077 (vacuum pump) and 0.0381 (syringe pump), respectively. The demonstrated flow sensor provides excellent functionality for conductive liquid.  相似文献   

16.
In this study, an arid grassland was selected, and the chlorophyll content of the leaf and canopy level was estimated based on Landsat-8 Operational Land Imager (OLI) data using the PROSAIL radiative transfer (RT) model. Two vegetation indices (green chlorophyll index, CIgreen, and greenness index, G) were selected to estimate the leaf and canopy chlorophyll content (LCC and CCC). By analysing the effect of soil background on the two indices, the LCC was divided into low and moderate-to-high levels. A different combination of the two indices was adopted at each level to improve the chlorophyll content estimation accuracy. The results suggested that the chlorophyll content estimated using the proposed method yielded a higher accuracy with coefficient of determination, R2 = 0.84, root-mean-square error, RMSE = 9.67 μg cm?2 for LCC and R2 = 0.85, RMSE = 0.43 g m?2 for CCC than that using CIgreen alone with R2 = 0.62, RMSE = 20.04 μg cm?2 for LCC and R2 = 0.85, RMSE = 0.71 g m?2 for CCC. The results also confirmed the validity of this approach to estimate the chlorophyll content in arid areas.  相似文献   

17.
A low voltage electroosmotic (eo) pump suitable for high density integration into microfabricated fluidic systems has been developed. The high density integration of the eo pump required a small footprint as well as a specific on-chip design to ventilate the electrolyzed gases emerging at the platinum (Pt) electrodes. For this purpose, a novel liquid–gas (lg) separator was invented. This lg-separator separated the gas bubbles from the liquid and guided them away from the eo pump. Its operational principle was solely based on the geometry of tapered sidewalls. An eo pump sandwiched by two lg separators (microchannels in the range of 10 μm, footprint of 100 μm × 15 μm) was experimentally investigated. The lg-separator was able to reliably separate and ventilate an emerging gas flow of 2 pl s−1. The eo pump achieved flow rates of 50 pl s−1 at actuation voltages of 5 V.  相似文献   

18.
Spectral signatures of water hyacinth grown with biocontrol agents (Neochetina eichornia and N. bruchi) and various heavy metal pollutants were collected at the plant canopy level using a hand-held spectrometer to detect the biocontrol agent and heavy metal-induced plant stresses and the interaction between the two stressors. Water hyacinth was grown in 65l tubs, each with a single element from one of: As (1 mg l?1), Au (1 mg l?1), Cu (2 mg l?1), Fe (0.5, 2 and 4 mg l?1), Hg (1 mg l?1), Mn (0.5, 2, and 4 mg l?1), U (1 mg l?1), and Zn (4 mg l?1), with the exception of the control treatment. Three weeks after the metal treatments, the weevils were added to each tub, including those of the control treatment. Spectral measurements were taken before and after the addition of the weevils. Several spectral indicators of plant stress including red edge normalized difference vegetation index (RE-NDVI), modified red edge NDVI (mNDVI705), modified simple ratio (mSR), photochemical reflectance index (PRI), and red edge position (REP) calculated using first derivative and linear extrapolation and water band index (WBI) were used to identify the plant stresses of water hyacinth. The spectral indicators of both metal and weevil plant stressors were correlated with the leaf chlorophyll content from the SPAD-502 readings at the end of the experiment. Correlations of mNDVI705 with SPAD-502 readings were the highest followed by the indicators of REP. Cu-, Hg-, and Zn-treated plants showed significantly lower chlorophyll contents compared with the control treatment. A similar trend with four additional treatments (As, Fe-M, Mn-L, and Mn-H) was seen after the release of the weevils, indicating plant stress due to feeding by the biocontrol agent. However, adult and larval feeding was significantly reduced by Cu, Hg, and Zn elements, of which Cu was the most stressful. These results indicate that hyperspectral remote sensing has potential as a tool to determine the health status of water hyacinth from a remote location, to inform management interventions in control of the weed. However, its usage at a larger scale requires further studies.  相似文献   

19.
We have examined 16 years (1998–2013) of particulate organic carbon (POC) concentrations derived from remotely sensed ocean colour. POC concentrations vary spatially from more than 300 mg m?3 in the northern North Atlantic in summer to about 20 mg m?3 in the oligotrophic South Pacific (16-year global average = 67.7 mg m?3). The seasonal variability is weak at lower latitudes and stronger at higher latitudes. The annual mean surface POC concentrations show statistically significant regional trends (p < 0.05, 95% confidence level), and are decreasing in the North Atlantic and North Pacific and increasing in the South Pacific and Southern Oceans. The global trend is not significant. The 16-year global average water column POC biomass integrated over the euphotic depth, the mixed layer depth, or based on a combination of these two depths is estimated to be about 3.97, 3.92, and 5.03 g m?2, respectively. Water column integrated biomass shows different spatial and seasonal patterns than the surface POC concentrations, and is increasing in many ocean regions. Globally averaged POC biomass is also increasing. At the same time ocean colour data indicate a decrease in the global oceanic productivity (PP). This means that there is a negative trend in the ratio of PP to POC biomass almost everywhere in the ocean. Such a decrease could indicate that the biological pump in the ocean is weakening, but longer time series of the ocean colour data are needed to confirm this observation.  相似文献   

20.
Nature reserve establishment can lead to conflict with some stakeholders. Zoning management is useful to mitigate against the conflict between human development and nature reserves, and a nature reserve can be divided into three zones: the core zone, buffer zone, and experimental zone. So far, how to monitor and evaluate the effectiveness of zoning management in nature reserves is a problem faced by remote sensing scientists and ecologists. Net primary productivity (NPP) is a key indicator which can be used to monitor and evaluate the effectiveness of zoning management in nature reserves. However, to date there has been no research on the effectiveness of zoning management on NPP, and the estimation of NPP in the Tianmu Mountain Nature Reserve also has not been studied. Based on remote sensing data and in situ measurements, the Carnegie–Ames–Stanford approach (CASA) model was used to estimate NPP in the Tianmu Mountain Nature Reserve during the period 1984–2014. We used the observed NPP to verify the simulated NPP, and the results show that the simulated NPP was consistent with the observed NPP (R2 ≥ 0.85, ≤ 0.0002, RMSE = 52.62 g C m?2 year?1, where R2 represents coefficient of determination, p represents statistical significance, and RMSE represents root mean square error). This means that the CASA model is suitable for NPP estimation in the Tianmu Mountain Nature Reserve. The results also indicate that NPP showed an increasing trend during the period 1984–2014, and the increase over the whole period was 6.66%. The total of the annual averaged NPP was 3.07 × 1010 g C year?1, while the annual averaged NPP per unit area was 708 g C m?2 year?1. The largest averaged annual NPP per unit appeared in the core zone (720 g C m?2 year?1), followed by the buffer zone (711 g C m?2 year?1), with the experimental zone having the smallest averaged annual NPP per unit (706 g C m?2 year?1). At the < 0.1 level, there was no region where NPP had decreased significantly in the core zone and buffer zone, and the area of the regions where NPP had decreased significantly in the experimental zone was 8.04 ha. At the p < 0.05 level, there was no area where NPP had decreased significantly in the three zones of the Tianmu Mountain Nature Reserve. The results show that the zoning management on NPP was effective in the Tianmu Mountain Nature Reserve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号