首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
本文介绍了一种汽油机用高压缩比快速稀燃系统及其爆震控制点火系统,通过试验研究,对该系统的稀燃特性,爆震特性以及经济,动力性能等进行了分析。  相似文献   

2.
Knocking combustion research is crucially important because it determines engine durability, fuel consumption, and power density, as well as noise and emission performance. Current spark ignition (SI) engines suffer from both conventional knock and super-knock. Conventional knock limits raising the compression ratio to improve thermal efficiency due to end-gas auto-ignition, while super-knock limits the desired boost to improve the power density of modern gasoline engines due to detonation. Conventional combustion has been widely studied for many years. Although the basic characteristics are clear, the correlation between the knock index and fuel chemistry, pressure oscillations and heat transfer, and auto-ignition front propagation, are still in early stages of understanding. Super-knock combustion in highly boosted spark ignition engines with random pre-ignition events has been intensively studied in the past decade in both academia and industry. These works have mainly focused on the relationship between pre-ignition and super-knock, source analyses of pre-ignition, and the effects of oil/fuel properties on super-knock. The mechanism of super-knock has been recently revealed in rapid compression machines (RCM) under engine-like conditions. It was found that detonation can occur in modern internal combustion engines under high energy density conditions. Thermodynamic conditions and shock waves influence the combustion wave and detonation initiation modes. Three combustion wave modes in the end gas have been visualized as deflagration, sequential auto-ignition and detonation. The most frequently observed detonation initiation mode is shock wave reflection-induced detonation (SWRID). Compared to the effect of shock compression and negative temperature coefficient (NTC) combustion on ignition delay, shock wave reflection is the main cause of near-wall auto-ignition/detonation. Finally, suppression methods for conventional knock and super-knock in SI engines are reviewed, including use of exhaust gas recirculation (EGR), the injection strategy, and the integration of a high tumble - high EGR-Atkinson/Miller cycle. This paper provides deep insights into the processes occurring during knocking combustion in spark ignition engines. Furthermore, knock control strategies and combustion wave modes are summarized, and future research directions, such as turbulence-shock-reaction interaction theory, detonation suppression and utilization, and super-knock solutions, are also discussed.  相似文献   

3.
在无阀式脉冲爆震发动机模型机上进行了多循环喷雾两相爆震的实验研究.点火后爆震管内压力上升需要一定的延迟时间,但是迅速增压过程是在火焰传播到一定区域后开始的,在该区域形成向两个方向传播的压缩波,向未燃区传播的压缩波不断加强,形成爆震波,向已燃区传播的压缩波不断衰减;爆震峰值压力沿流向不断增加,压力上升速度加快,峰值随机差异放大;通过对压力历程的分析,用两种方法估算了两相爆震波诱导区的长度.实验中发现,两相爆震的点火延迟时间远大于爆燃向爆震转变的时间,两者之和相对于高频爆震循环非常可观,是限制两相脉冲爆震发动机频率提高的关键因素,并分析了多循环工作时的吸气和排气过程.  相似文献   

4.
High-pressure multi-hole injectors for direct-injection spark-ignition engines offer some great benefits in terms of fuel atomisation, as well as flexibility in fuel targeting by selection of the number and angle of the nozzle holes. The flow through the internal passages of injectors is known to influence the characteristics of spray formation. In particular, understanding how in-nozzle cavitation phenomena can be used to improve atomisation is essential for improving mixture preparation quality under homogeneous or stratified engine operating conditions. However, no data exist for injector body temperatures representative of real engine operation, especially at low-load conditions with early injection strategies that can also lead to phase change due to fuel flash-boiling upon injection. This challenge is further complicated by the predicted fuel stocks which will include a significant bio-derived component presenting the requirement to manage fuel flexibility. The physical/chemical properties of bio-components, like various types of alcohols, can differ markedly from gasoline and it is important to study their effects. This work outlines results from an experimental imaging investigation into the effects of fuel properties, temperature and pressure conditions on the extent of cavitation, flash-boiling and, subsequently, spray formation. This was achieved by the use of real-size transparent nozzles, replica of an injector from a modern direct-injection spark-ignition combustion system. Gasoline, iso-octane, n-pentane, ethanol and butanol were used at 20, 50 and 90 °C injector body temperatures for ambient pressures of 0.5 bar and 1.0 bar in order to simulate early homogeneous injection strategies for part-load and wide open throttle engine operation. The fuel matrix also included a blend of 10% ethanol with 90% gasoline (E10) because the vapour pressure of E10 is higher than the vapour pressure of either ethanol or gasoline and the distillation curve of E10 reflects strongly this effect. Therefore, the distillation curves of the fuels, the vapour pressures, as well as density, viscosity and surface tension were obtained and the Reynolds, Weber, Ohnesorge and Cavitation numbers were considered in the analysis. The in-nozzle flow regime and spray formation was found to be sensitive to the fuel temperature and gas pressure as a result of the vapour pressure and temperature relationships.  相似文献   

5.
无铅汽油的广泛使用,使得汽车排放物中有害物质苯的数量有所增加。为了解汽油燃烧过程中苯的生成规律,选用93#汽油、基础油和适当比例的添加剂为试验燃料,在定容燃烧弹上进行了一系列试验研究,利用气相色谱仪分析得到苯的排放量。试验结果表明,燃烧产物中的苯源于未完全燃烧的燃油,燃烧过程中裂解出的小分子自由基也会形成苯,在燃料中添加乙醇后,苯的排放量并不一定增加。  相似文献   

6.
汽油/柴油双燃料高比例预混压燃燃烧与排放的试验   总被引:1,自引:0,他引:1  
对汽油/柴油双燃料高比例预混燃烧(HPCC)模式的燃烧及排放特性进行了初步的试验研究.结果表明,通过改变柴油的喷射时刻、汽油比例,HPCC呈现出由多种燃烧模式组成的复合燃烧模式,可以实现极低的NOx和碳烟排放,并能保持较高的热效率.试验工况下,汽油比例为50%时,柴油喷油时刻在-58~-6,°CA ATDC时热效率较高,喷油时刻在-49,°CA ATDC和-16,°CA ATDC时分别出现碳烟和NOx排放峰值.进气压力影响HPCC着火滞燃期、燃烧反应速度和"失火"与"爆震"燃烧汽油比例限值,提高进气压力可以提高汽油比例,实现超低的NOx和碳烟排放,并降低HC排放,但CO排放有所升高.随着汽油比例的增加,NOx与碳烟排放降低,对于IMEP为0.5,MPa、汽油比例大于50%时,两者的原始排放分别低于0.4,g/(kW.h)、0.06,FSN,但HC和CO排放升高.  相似文献   

7.
In order to investigate the effects of gas mixture components on the combustion characteristics of rotating detonation wave, two-dimensional simulation is presented to simulate the propagation process of rotating detonation wave with different methane conversions. The results indicate that there are five propagation modes of rotating detonation wave with different components: single-wave mode, single wave with counter-rotating components mode, double-waves mode, triple-waves mode and quadruple-waves mode. The detonation wave propagates along the forward direction in all five modes. With the increase of methane conversion, multi-wave mode appears in the combustion chamber. The fuel component has a great influence on the heat release ratio of detonation combustion. The velocity of detonation wave decreases with the increase of methane conversion. With the increase of methane conversion, the chemical reaction rate gradually increases, which leads to the intensification of chemical reaction on the deflagration surface. The reaction on the deflagration surface develops to the unburned fuel zone, which eventually leads to the formation of compression waves and shock waves in the fuel refill zone. When the shock wave sweeps through the fresh premixed gas, the reactant is compressed to form a detonation point and then ignite the fuel. A new detonation wave is finally formed. The total pressure ratio decreases with the increasing methane conversion, and the uniformity of the total pressure of outlet decreases with increasing methane conversion.  相似文献   

8.
基于台架试验和完整工作循环数值模拟,开展了汽油机活塞头部形貌特征对爆震的敏感性研究。以台架试验数据为基准校正了汽油机性能仿真模型,通过开展压缩比为9~16区间的外特性仿真模拟,得出压缩比为12时外特性最优。在压缩比为12的3 500r/min全负荷工况,采用化学反应动力学离子分析法,通过数值模拟分析3类基于活塞头部形貌方案的燃烧室,得出具有点火驻涡区域、气门避障区域、驻涡与避障区域之间的连通区域、后部连通区域的SABCD方案抗爆性最优,并指出活塞头部形貌特征中的连通区域对爆震敏感性具有显著影响。通过对方案SABCD的连通区域关键参数进行优化得出,当区域连通宽度和连通台阶高度均为4mm时爆震敏感性最低。研究结果表明,通过对活塞头部形貌特征的合理设计,能实现提升汽油机压缩比的同时有效抑制燃烧室对爆震的敏感性。  相似文献   

9.
在缸内直喷汽油机(GDI)上采用多次燃油喷射和可变配气技术来控制缸内混合气形成和燃烧,实现了SI/HCCI复合燃烧方式。研究了不同压缩比和辛烷值对均质混合气压燃(HCCI)燃烧排放特性的影响。结果表明,汽油HCCI燃烧呈现单阶段燃烧燃料特性,HCCI着火发生在上止点附近时油耗低。低压缩比下,HCCI燃烧可以在较浓空燃比下工作,NOx排放较高。高辛烷值燃料HCCI燃烧可运行的负荷范围窄。汽油HCCI发动机在偏高压缩比条件下燃用偏低辛烷值汽油可以获得较好的经济性和排放性能。  相似文献   

10.
This paper presents an analytical investigation to study the effect of combustion duration on the engine's performance and emission characteristics using both gasoline and hydrogen fuels. Certain minimum value for the combustion duration was found beyond which the performance of the engine deteriorates. This combustion duration was also found to vary with engine speed for each type of fuel studied. This value should be maintained for best performance of the engine. The results show that the combustion duration of hydrogen is much less than that for gasoline. Further, with hydrogen fuel, the cylinder parameters reach its maximum/minimum values at shorter time than with gasoline fuels. Further shown in this study is the clear advantage of using hydrogen as fuel is its significant reduction in the specific fuel consumption. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号