首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
In this study, mixtures of trichloroisocyanuric acid (TCI) and fumaric acid (FA) solutions were applied to a difficult-to-bond, vulcanized styrene-butadiene rubber (R2) to analyze the combined effect of both surface treatments. The treated R2 rubber surfaces were characterized using advancing contact angle measurements, ATR-IR and XPS spectroscopy, and SEM. T-peel tests of treated R2 rubber/ polyurethane adhesive/leather joints have been obtained in order to quantify the adhesion properties. The wettability of R2 rubber was improved by treatment with 3 wt% TCI/EA (ethyl acetate) or 0.5 wt% FA/EtOH, and lower contact angles were obtained by treatment with both 3 wt% TCI/EA and 0.5 wt% FA/EtOH. The improved wettability was ascribed to the creation of carbon-chlorine moieties, the removal of zinc stearate and paraffin wax, and the creation of surface roughness on the R2 rubber surface. Treatment of R2 rubber with 3 wt% TCI/EA before or after treatment with 0.5 wt% FA/EtOH, or with a solution containing 3 wt% TCI/EA + 0.5 wt% FA/EtOH mixture produced a noticeable increase in peel strength. Always, the effects of the treatment of R2 rubber with 3 wt% TCI solution were dominant over those produced by treatment with 0.5 wt% FA solution in ethanol (FA/EtOH). On the other hand, the treatment of R2 rubber with 3 wt% TCI/EA + 0.5 wt% FA/EtOH mixture was more effective than the treatment with 0.5 wt% TCI/EA+ 2 wt% FA/EtOH because the lower amount of chlorinating agent in this mixture.  相似文献   

2.
In this study, treatment with sulphuric acid was used to increase the adhesion of an ethylene-vinyl acetate copolymer containing 20 wt% vinyl acetate (EVA20). The treatment with sulphuric acid improved the wettability of EVA20 due to thecreation of different oxygen and sulphonic acid moieties on the surface. The treatment also created cracks and heterogeneities on the EVA20 surface, and enhanced T-peel strength values of EVA20/polychloroprene adhesive+5 wt% isocyanate joints were obtained. The loci of failure of the joints were mixed, i.e. , adhesional and cohesive in the adhesive. Peel strength values of both as-received and sulphuric acid-treated EVA20/polychloroprene adhesive joints increased after ageing at 50°C and 95 wt% relative humidity for 72 because the complete cure of the adhesive was thereby was produced. The durability of the EVA20 treated with sulphuric acid was monitored between 15 min and 5 years. High peel strength values were obtained for times up to 61 days; the joints produced with the treated EVA20 five years after treatment showed lower peel strength value due to the creation of a weak boundary layer produced by reaction of the residual sulphuric acid on the surface with EVA20. On the other hand, different experimental variables in the treatment of EVA20 with sulphuric acid were considered. The optimum treatment conditions for EVA20 were obtained by immersion in highly concentrated sulphuric acid (96 wt%) for one minute followed by neutralisation with ammonium hydroxide.  相似文献   

3.
In this study, treatment with sulphuric acid was used to increase the adhesion of an ethylene-vinyl acetate copolymer containing 20 wt% vinyl acetate (EVA20). The treatment with sulphuric acid improved the wettability of EVA20 due to thecreation of different oxygen and sulphonic acid moieties on the surface. The treatment also created cracks and heterogeneities on the EVA20 surface, and enhanced T-peel strength values of EVA20/polychloroprene adhesive+5 wt% isocyanate joints were obtained. The loci of failure of the joints were mixed, i.e. , adhesional and cohesive in the adhesive. Peel strength values of both as-received and sulphuric acid-treated EVA20/polychloroprene adhesive joints increased after ageing at 50°C and 95 wt% relative humidity for 72 because the complete cure of the adhesive was thereby was produced. The durability of the EVA20 treated with sulphuric acid was monitored between 15 min and 5 years. High peel strength values were obtained for times up to 61 days; the joints produced with the treated EVA20 five years after treatment showed lower peel strength value due to the creation of a weak boundary layer produced by reaction of the residual sulphuric acid on the surface with EVA20. On the other hand, different experimental variables in the treatment of EVA20 with sulphuric acid were considered. The optimum treatment conditions for EVA20 were obtained by immersion in highly concentrated sulphuric acid (96 wt%) for one minute followed by neutralisation with ammonium hydroxide.  相似文献   

4.
提高转化率对丁苯橡胶结构及性能的影响   总被引:5,自引:1,他引:5  
王真琴  吴福生 《弹性体》2002,12(5):46-49
研究了 4.5万t/a丁苯装置转化率在 5 8%~ 72 %范围内提高时 ,对丁苯橡胶结构及性能的影响 ,结果表明 ,随转化率的提高 ,SBR15 0 0、SBR15 0 2相对分子Mw 分别在 (3.3~ 3.7)× 10 5、(3.6~ 3.8)× 10 5范围内增大 ,相对分子质量分布Mw/Mn 变宽 ,聚丁二烯链节中反式 1,4-结构略有降低 ,顺式 1,4-结构及 1,2 -结构略有增加 ;链节序列分布基本不变 ;结合苯乙烯约增大 0 .7%、胶浆凝胶质量分数约增加0 .1%;产品物性指标中有机酸含量有所降低 ;而门尼粘度由 49增大到 5 3,拉伸强度约提高了 0 .9MPa ,2 5min 30 0 %定伸强度提高了 0 .8MPa ,扯断伸长率降低了 30 %。  相似文献   

5.
Continuous low‐level current (CLLC) measurements for detecting ionic species in the course of vulcanization reactions were applied to investigate the vulcanization of a mixture of natural rubber (NR), sulfur (S), and zinc bis(dimethyldithiocarbamate) (ZnDMTC). A dc voltage was applied to the reaction mixture in a special vulcanization mold and the current (e.g., in the range of 10−9 A) was measured. Temperature‐dependent current maxima were found after reaction times tmax. The simplest explanation is that transitory ionic species occur during vulcanization. An activation energy (Ea ) = 116.4 kJ/mol, similar to that obtained in previous chemical investigations, was determined from the decrease of tmax with increasing temperature. The maxima corresponded to reaction times where a strong increase of polymer crosslinking was observed, as measured using vulcametry. For comparison, dc measurements were carried out with the corresponding mixture without elemental sulfur (NR/ZnDMTC) and mixtures containing zinc stearate (ZnST) instead of zinc bis(dimethyldithiocarbamate) (NR/S/ZnST and NR/ZnST). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2206–2212, 2000  相似文献   

6.
This study aimed at preparing three nanocomposites of optically active poly(amide–imide) and zirconium dioxide (ZrO2) inorganic nanoparticles through the ultrasonic process. First, the surface of ZrO2 nanocomposites was chemically modified with bio-active citric acid in the basic media. Then, the poly(amide–imide) was reinforced with modified nanocomposites and three poly(amide–imide)/ZrO2-citric acid nanocomposites were synthesized by ultrasonic irradiation. The poly(amide–imide) was prepared by polycondensation of N-trimellitylimido-L-leucine with 4,4′-diaminodiphenylsulfone using of triphenyl phosphite and molten tetra-n-butylammonium bromide as green media. The obtained poly(amide–imide)/ZrO2-citric acid nanocomposites were characterized by different techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号