首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In order to solve ill-posed linear inverse problems, we modify the Tikhonov regularization method by proposing three different preconditioners, such that the resultant linear systems are equivalent to the original one, without dropping out the regularized term on the right-hand side. As a consequence, the new regularization methods can retain both the regularization effect and the accuracy of solution. The preconditioned coefficient matrix is arranged to be equilibrated or diagonally dominated to derive the optimal scales in the introduced preconditioning matrix. Then we apply the iterative scheme to find the solution of ill-posed linear inverse problem. Two theorems are proved that the iterative sequences are monotonically convergent to the true solution. The presently proposed optimally generalized regularization methods are able to overcome the ill-posedness of linear inverse problems, and provide rather accurate numerical solution.  相似文献   

2.
In this paper, numerical solutions are investigated based on the Trefftz method for an over-specified boundary value problem contaminated with artificial noise. The main difficulty of the inverse problem is that divergent results occur when the boundary condition on over-specified boundary is contaminated by artificial random errors. The mechanism of the unreasonable result stems from its ill-posed influence matrix. The accompanied ill-posed problem is remedied by using the Tikhonov regularization technique and the linear regularization method, respectively. This remedy will regularize the influence matrix. The optimal parameter λ of the Tikhonov technique and the linear regularization method can be determined by adopting the adaptive error estimation technique. From this study, convergent numerical solutions of the Trefftz method adopting the optimal parameter can be obtained. To show the accuracy of the numerical solutions, we take the examples as numerical examination. The numerical examination verifies the validity of the adaptive error estimation technique. The comparison of the Tikhonov regularization technique and the linear regularization method was also discussed in the examples.  相似文献   

3.
An inverse problem in static thermo-elasticity is investigated. The aim is to reconstruct the unspecified boundary data, as well as the temperature and displacement inside a body from over-specified boundary data measured on an accessible portion of its boundary. The problem is linear but ill-posed. The uniqueness of the solution is established but the continuous dependence on the input data is violated. In order to reconstruct a stable and accurate solution, the method of fundamental solutions is combined with Tikhonov regularization where the regularization parameter is selected based on the L-curve criterion. Numerical results are presented in both two and three dimensions showing the feasibility and ease of implementation of the proposed technique.  相似文献   

4.
The Boundary Element Method (BEM) is applied to solve numerically some inverse boundary value problems associated to the biharmonic equation which involve over‐ and under‐specified boundary portions of the solution domain. The resulting ill‐conditioned system of linear equations is solved using the regularization and the minimal energy methods, followed by a further application of the Singular Value Decomposition Method (SVD). The regularization method incorporates a smoothing effect into the least squares functional, whilst the minimal energy method is based on minimizing the energy functional for the Laplace equation subject to the linear constraints generated by the BEM discretization of the biharmonic equation. The numerical results are compared with known analytical solutions and the stability of the numerical solution is investigated by introducing noise into the input data. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a nonlinear inverse boundary value problem associated to the biharmonic equation is investigated. This problem consists of determining an unknown boundary portion of a solution domain by using additional data on the remaining known part of the boundary. The method of fundamental solutions (MFS), in combination with the Tikhonov zeroth order regularization technique, are employed. It is shown that the MFS regularization numerical technique produces a stable and accurate numerical solution for an optimal choice of the regularization parameter. A. Zeb on study leave visiting the University of Leeds.  相似文献   

6.
In this paper we propose a numerical algorithm based on the method of fundamental solutions for recovering a space-dependent heat source and the initial data simultaneously in an inverse heat conduction problem. The problem is transformed into a homogeneous backward-type inverse heat conduction problem and a Dirichlet boundary value problem for Poisson's equation. We use an improved method of fundamental solutions to solve the backward-type inverse heat conduction problem and apply the finite element method for solving the well-posed direct problem. The Tikhonov regularization method combined with the generalized cross validation rule for selecting a suitable regularization parameter is applied to obtain a stable regularized solution for the backward-type inverse heat conduction problem. Numerical experiments for four examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed algorithm.  相似文献   

7.
For thin metal films the solution of the inverse problem of the phenomenological theory of the optical properties of thin films is incorrect when the ratio of the film thickness to the incident light wavelength becomes less than 0.05 because the set of equations describing the relation between the measured optical characteristics and the optical constants of the film is virtually a set of linear equations with determinant equal to zero. For this reason the usual methods of solving the inverse problem give ambiguous solutions (optical constants) which are unstable to small errors in the measured optical characteristics. If the method of continuous differential descent is used as the regularization method for solution of this inverse problem unambiguous and stable solutions can be obtained.  相似文献   

8.
This paper deals with the determination of an initial condition in degenerate hyperbolic equation from final observations. With the aim of reducing the execution time, this inverse problem is solved using an approach based on double regularization: a Tikhonov’s regularization and regularization in equation by viscose-elasticity. So, we obtain a sequence of weak solutions of degenerate linear viscose-elastic problems. Firstly, we prove the existence and uniqueness of each term of this sequence. Secondly, we prove the convergence of this sequence to the weak solution of the initial problem. Also we present some numerical experiments to show the performance of this approach.  相似文献   

9.
This article deals with an inverse problem of determining the space-dependent diffusion coefficient and the source coefficient simultaneously in the multi-term time fractional diffusion equation (TFDE in short) using measurements at one inner point. From a view point of optimality, solving the inverse problem is transformed to minimize an error functional with the help of the solution operator from the unknown to the additional observation. The solution operator is nonlinear but it is of Lipschitz continuity by which existence of a minimum to the error functional is obtained using Sobolev embedding theorems. The homotopy regularization algorithm is introduced to solve the simultaneous inversion problem based on the minimization problem, and numerical examples are presented. The inversion solutions give good approximations to the exact solutions demonstrating that the homotopy regularization algorithm is efficient for the simultaneous inversion problem arising in the multi-term TFDE.  相似文献   

10.
The authors focus on the multidimensional inverse scattering of objects buried in an inhomogeneous elastic background structure. The medium is probed by an ultrasonic force and the scattered field is observed along a receiver array. The goal is to retrieve both the geometry (imaging problem) and the constitutive parameters (inverse problem) of the object through an appropriate multiparameter direct linear inversion. The problem is cast in terms of a vector integral equation elastic scattering framework. The multidimensional inverse scattering problem, being nonlinear and ill-posed, is linearized within the Born approximation for inhomogeneous background, and a minimum-norm least-square solution to the discretized version of the vector integral formulation is sought. The solution is based on a singular value decomposition of the forward operator matrix. The method is illustrated on a 2-D problem where constrained least-square inversion of the object is performed from synthetic data. A Tikhonov regularization scheme is examined and compared to the minimum-norm least-square estimate.  相似文献   

11.
Electrical capacitance tomography (ECT) attempts to image the permittivity distribution of an object by measuring the electrical capacitance between sets of electrodes placed around its periphery. Image reconstruction in ECT is a nonlinear ill-posed inverse problem, and regularization methods are needed to stabilize this inverse problem. The reconstruction of complex shapes (sharp edges) and absolute permittivity values is a more difficult task in ECT, and the commonly used regularization methods in Tikhonov minimization are unable to solve these problems. In the standard Tikhonov regularization method, the regularization matrix has a Laplacian-type structure, which encourages smoothing reconstruction. A Helmholtz-type regularization scheme has been implemented to solve the inverse problem with complicated-shape objects and the absolute permittivity values. The Helmholtz-type regularization has a wavelike property and encourages variations of permittivity. The results from experimental data demonstrate the advantage of the Helmholtz-type regularization for recovering sharp edges over the popular Laplacian-type regularization in the framework of Tikhonov minimization. Furthermore, this paper presents examples of the reconstructed absolute value permittivity map in ECT using experimental phantom data.   相似文献   

12.
The mathematic problem of restoring an image degraded by blurring and noise is ill-posed, so that the solution is affected by numeric instability. As a consequence, the solution provided by the so-called inverse filter is completely contaminated by noise and, in general, is deprived of any physical meaning. If one looks for approximate solutions, the ill-posedness of the problem implies that the set of these solutions is too broad. For this reason, one must look for approximate solutions satisfying some kind of a priori constraints, the so-called a priori information. This fact explains the variety of methods, usually called regularization methods, which have been designed for solving this kind of problems. In this article we briefly review some of the most widely used methods, both deterministic and probabilistic, and show their effectiveness in the restoration of some HST images.  相似文献   

13.
Two numerical methods for the Cauchy problem of the biharmonic equation are proposed. The solution of the problem does not continuously depend on given Cauchy data since the problem is ill-posed. A small noise contained in the Cauchy data sensitively affects on the accuracy of the solution. Our problem is directly discretized by the method of fundamental solutions (MFS) to derive an ill-conditioned matrix equation. As another method, our problem is decomposed into two Cauchy problems of the Laplace and the Poisson equations, which are discretized by the MFS and the method of particular solutions (MPS), respectively. The Tikhonov regularization and the truncated singular value decomposition are applied to the matrix equation to stabilize a numerical solution of the problem for the given Cauchy data with high noises. The L-curve and the generalized cross-validation determine a suitable regularization parameter for obtaining an accurate solution. Based on numerical experiments, it is concluded that the numerical method proposed in this paper is effective for the problem that has an irregular domain and the Cauchy data with high noises. Furthermore, our latter method can successfully solve the problem whose solution has a singular point outside the computational domain.  相似文献   

14.
Two methods of solving the inverse heat conduction problem with employment of the discrete Fournier transform are presented in this article. The first one operates similarly to the SVD algorithm and consists in reducing the number of components of the discrete Fournier transform which are taken into account to determine the solution to the inverse problem. The second method is related to the regularization of the solution to the inverse problem in the discrete Fournier transform domain. Those methods were illustrated by numerical examples. In the first example, an influence of the boundary conditions disturbance by a random error on the solution to the inverse problem (its stability) was examined. In the second example, the temperature distribution on the inner boundary of the multiply connected domain was determined. Results of calculations made in both ways brought very good outcomes and confirm the usefulness of applying the discrete Fournier transform to solving inverse problems.  相似文献   

15.
The problem of object restoration in the case of spatially incoherent illumination is considered. A regularized solution to the inverse problem is obtained through a probabilistic approach, and a numerical algorithm based on the statistical analysis of the noisy data is presented. Particular emphasis is placed on the question of the positivity constraint, which is incorporated into the probabilistically regularized solution by means of a quadratic programming technique. Numerical examples illustrating the main steps of the algorithm are also given.  相似文献   

16.
We investigate a meshless method for the stable and accurate solution of inverse problems associated with two-dimensional Helmholtz-type equations in the presence of boundary singularities. The governing equation and boundary conditions are discretized by the method of fundamental solutions (MFS). The existence of boundary singularities affects adversely the accuracy and convergence of standard numerical methods. Solutions to such problems and/or their corresponding derivatives may have unbounded values in the vicinity of the singularity. Moreover, when dealing with inverse problems, the stability of solutions is a key issue and this is usually taken into account by employing a regularization method. These difficulties are overcome by combining the Tikhonov regularization method (TRM) with the subtraction from the original MFS solution of the corresponding singular solutions, without an appreciable increase in the computational effort and at the same time keeping the same MFS discretization. Three examples for both the Helmholtz and the modified Helmholtz equations are carefully investigated.  相似文献   

17.
In this paper, a recursion numerical technique is considered to solve the inverse heat conduction problems, with an unknown time-dependent heat source and the Neumann boundary conditions. The numerical solutions of the heat diffusion equations are constructed using the Gaussian radial basis functions. The details of algorithms in the one-dimensional and two-dimensional cases, involving the global or partial initial conditions, are proposed, respectively. The Tikhonov regularization method, with the generalized cross-validation criterion, is used to obtain more stable numerical results, since the linear systems are badly ill-conditioned. Moreover, we propose some results of the condition number estimates to a class of positive define matrices constructed by the Gaussian radial basis functions. Some numerical experiments are given to show that the presented schemes are favourably accurate and effective.  相似文献   

18.
This paper presents a hybrid regularization method for solving inverse heat conduction problems. The method uses future temperatures and past fluxes to reduce the sensitivity to temperature noise. A straightforward comparison technique is suggested to find the optimal number of the future temperatures. Also, an eigenvalue reduction technique is used to further improve the accuracy of the inverse solution. The method provides a physical insight into the inverse problems under study. The insight indicates that the inverse algorithm is a general purpose algorithm and applicable to various numerical methods (although our development was based on FEM), and that the inverse solutions can be obtained by directly extending Stolz's equation in the least‐squares error (LSE) sense. Direct extension of the present method to the inverse internal heat generation problems is made. Four numerical examples are given to validate the method. The effects of the future temperatures, the past fluxes, the eigenvalue reduction, the varying number of future temperatures and local iterations for non‐linear problems are studied. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
In this article, a meshless numerical method for solving the inverse source problem of the space-fractional diffusion equation is proposed. The numerical solution is approximated using the fundamental solution of the space-fractional diffusion equation as a basis function. Since the resulting matrix equation is extremely ill-conditioned, a regularized solution is obtained by adopting the Tikhonov regularization scheme, in which the choice of the regularization parameter is based on generalized cross-validation criterion. Two typical numerical examples are given to verify the efficiency and accuracy of the proposed method.  相似文献   

20.
A non-linear inverse heat source identification problem is described and solved. The inverse problem analysis is used in the design of an embedded micro-heater array and to estimate the required control settings, which are the input currents to each heating element, to generate as close as possible to a prescribed temperature profile on the surface of a thin copper film. The purpose of the micro-heater array is to control the local copper microstructure through control of the local temperature field. A finite element model of the micro-heater system is used to define a discrete set of non-linear equations used as a basis for the inverse problem solution. Two methods are explored to solve the inverse problem, a direct minimization method with Tikhonov regularization and a passivity-based feedback control algorithm. A uniform and a linear temperature distribution could be attained in the central region above the micro-heater array, but the temperatures near the edges of the domain could not be controlled due to heat loss at the edges. Thus, to control the temperature field over the full width of the domain, the heater array must extend beyond the domain of interest. Both methods to solve the inverse problem are found to perform well. The regularization method allows for a smoother solution, while the feedback control method is simpler as the coefficient matrix for which the update remains unchanged for each iteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号