首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Integrated ferroelectrics》2013,141(1):689-696
This work presents the design, fabrication and microwave performance of distributed analog phase shifter (DAPS) fabricated on (Ba,Sr)TiO3 (BST) thin films for X-band applications. Ferroelectric BST thin films were deposited on MgO substrates by pulsed laser deposition. The DAPS consists of high impedance coplanar waveguide (CPW) and periodically loaded tunable BST interdigitated capacitors (IDC). In order to reduce the insertion loss of DAPS and to remove the alteration of unloaded CPW properties according to an applied dc bias voltage, BST layer under transmission lines were removed by photolithography and RF-ion milling. The measured results are in good agreement with the simulated results at the frequencies of interest. The measured differential phase shift based on BST thin films was 24° and the insertion loss decreased from ?1.1 dB to ?0.7 dB with increasing the bias voltage from 0 to 40 V at 10 GHz.  相似文献   

2.
Ferroelectric (Ba,Sr)TiO3 films have been deposited on (001) MgO single crystals by a pulsed laser deposition with oxygen background while heating the substrates. Deposited BST films exhibit epitaxial growth along (001), which are confirmed by x-ray diffraction measurement. Structure of (Ba,Sr)TiO3 along in-plane and surface normal direction have been investigated and found to have a tetragonal distortion depend on the deposition conditions, such as oxygen pressure. Lattice parameter decreases with increasing oxygen pressure, and tetragonallity (c/a) changes from 1.005 to 0.997 as oxygen pressure increase. Interestingly, energy gap measured by FTIR decreases with decreasing oxygen pressure until it reach a certain oxygen pressure, then increases again with increasing oxygen pressure. Furthermore, microwave properties of devices measured by a HP 8510C vector network analyzer from 0.045–20 GHz suggest that the least distorted films exhibit a larger dielectric constant changes with dc bias field.  相似文献   

3.
Single phase, (1 0 0) epitaxial Ba0.5Sr0.5TiO3 (BST) films have been deposited onto (1 0 0) LaAlO3 and MgO substrates by pulsed laser deposition (PLD). The capacitance and dielectric losses of as-deposited and annealed films have been measured from 1–20 GHz as a function of electric field (0–80 kV/cm) at room temperature. The dielectric properties are strongly affected by the substrate type, post-deposition annealing time (6 h) and temperature (1200°C). For epitaxial BST films deposited onto MgO, it is observed that, after a post-deposition anneal the dielectric constant and the dielectric loss decreases. For epitaxial BST films deposited onto LAO, a post-deposition anneal (1000°C) results in an increase in the dielectric constant and an increase in the dielectric loss. The dc electric field induced change in the dielectric constant tends to increase with the dielectric constant and is largest for as-deposited films on MgO and post-deposited annealed films on LAO. In general, for epitaxial BST films, a large electric field effect is observed in films that have a large dielectric loss and a small electric field effect in films that have a low dielectric loss. High resolution X-ray diffraction measurements indicate that deposited film exhibit a significant tetragonal distortion which is strongly affected by a by a post deposition anneal. The observed differences in dielectric properties of the epitaxial BST films on MgO and LAO are attributed to the differences in film stress which arise as a consequence of the lattice mismatch between the film and the substrate and the differences in the thermal coefficient of expansion between the film and the substrate. A thin amorphous buffer layer of BST has been used to relieve stress induced by the lattice mismatch between the film and the substrate. Unlike epitaxial films, stress relieved films do not show an inverse relationship between dielectric tuning and Q (1/tan) and may be superior materials for tunable microwave devices.  相似文献   

4.
Coplanar waveguide (CPW) transmission lines were fabricated on thin ferroelectric Ba1 – xSrxTiO3 films for tunable microwave applications. The growth of the ferroelectric oxide films was accomplished by a pulsed laser deposition with a partial oxygen background. Microwave properties of the CPW phase shifter were measured using a HP 8510C vector network analyzer from 0.045–20 GHz with –40–40 V of dc bias. A large phase shift angle of 120 at 10 GHz was observed from the CPW (gap = 4m, length = 3 mm) with a 40 V of dc bias change. The dielectric constant of the thin ferroelectric film was extracted from the dimension of the CPW (gap, width, length) and the measured S-parameter by a modified conformal mapping. However, the dielectric constant of the ferroelectric thin film exhibits a gap dependency; dielectric constant (990–830) decreases with increasing gap size (4–19 m, respectively). By adjusting the filling factors of the film, a constant dielectric constant of BST film is found to be 810 ± 5.  相似文献   

5.
Ferroelectric Mn doped Ba0.5Sr0.5TiO3 (Mn-BST) films with/without BaTiO3 (BT) buffer layer have been grown on (001) MgO substrates by a pulsed laser deposition to investigate electrical tunability at microwave frequencies. Structural properties and surface morphologies of the films were investigated using an X-ray diffractometer and a scanning electron microscope, respectively. Microwave dielectric properties of Mn-BST thin films with BT buffer were studied for reduction of dielectric loss and improvement of electrical tunability. Distributed analog phase shifters have been designed and fabricated on Mn-BST films with/without BT buffer layer to understand microwave dielectric properties. The differential phase shift of the phase shifter fabricated on Mn-BST film was 22° at 10 GHz with 80 V of applied dc bias voltage. In comparison, phase shifter fabricated on Mn-BST/BT multilayers exhibit 41° of differential phase shift at the same condition. This suggests that a BT buffer layer is for microwave tunable device applications. The phase shifter fabricated on Mn-BST/BT multilayers exhibit a low insertion loss (S21) of ?1.1 dB, and a low return loss (S11) of ?14 dB with a bias voltage of 80 V.  相似文献   

6.
《Integrated ferroelectrics》2013,141(1):1175-1184
(Ba0.7Sr0.3)TiO3 and SrTiO3 thin films were deposited on Pt electrodes in a planetary multi-wafer MOCVD reactor. The nucleation behavior and the size of the stable nuclei were investigated by different SPM techniques. Characteristic differences were observed for different deposition temperatures, i.e. a homogeneous nucleation of small BST grains on the larger Pt grains at 565°C and a dominating nucleation at the grain boundaries at 655°C. The micro structural evolution after further film growth was investigated by HRTEM and revealed randomly oriented grains (typical inplane size 10–20 nm) with a high density of twins at 565°C and (100)-oriented defect free grains of only slightly increased size at 655°C. For SrTiO3 the inplane grain size was increased, however, the (100) texture was less perfect. As the electrical properties like permittivity and also leakage current depend on film thickness the final discussions of the electrical properties are based on thickness series (5 nm–100 nm films) and evaluated within the phenomenological dead layer model.  相似文献   

7.
This paper describes an active phase shifter with a large amount of variable phase. We propose a design that has second-order all-pass network characteristics and that uses a tunable ferroelectric capacitor. The transmitted phase is changed by varying the capacitance of a ferroelectric capacitor. A computer simulation is presented that shows that the network, even with markedly non-ideal transistors, can provide a true all-pass response over the frequency band of interest (100 MHz–400 MHz). These simulated results demonstrate an analog tunability of about 200° with a gain variation of about 3 dB at 300 MHz—when using a Ba0.96Ca0.04Ti0.84Zr0.16O3 (BCTZ) capacitor with a tunability of 2:1. The simulation performed at 300 MHz because the physical layout of the real life circuit will be done mostly with the discrete components. As the self resonance frequency of most of the discrete components lies in the few hundreds of MHz range, our preferred frequency is a practical one to deal with. The simulation also predicts a flat band gain of approximately 10 dB with ± 2 dB of gain ripple.  相似文献   

8.
Ferroelectric Ba0.5Sr0.5TiO3 (BST) films were prepared on Pt/Ti/SiO2/Si substrates by the sol-gel process. The films were spin-coated at 2000 rpm for 30 secs and then pyrolysed for 5 mins at the temperature of 350C. This coating procedure was repeated for 3, 4, 5 and 6 times to obtain BST films with different thicknesses. After coating the films with the desired repetition times, the films were finally annealed in a conventional furnace at temperatures ranging from 600C to 800C with a 50C interval in between. The films obtained with an annealing procedure of 750C were polycrystalline with the presence of an impurity BaCO3 phase. The capacitance and leakage current were measured and used to extract information on the metal-BST interface. With the series capacitance model and modified Schottky emission equation, the thickness of the dead layers for Au/BST and Pt/BST interfaces were calculated to be less than 6 nm and 5 nm, respectively.  相似文献   

9.
Abstract

Sol-gel solutions were synthesized by using various alkoxides of polyhydric alcohol, carboxylate and stabilizer. Stability of modified sol-gel solution was good enough to keep its properties after at least three months although that of ordinary sol-gel solution is not good.

SBT films were fabricated on Pt(200nm)/Ti(20nm)SiO2(500nm)/Si substrate at under 700°C by using modified sol-gel solution. Range of drying temperature was 200 to 400°C and that of RTA was 550 to 700°C. At high drying temperature, decrease of crystallinity for SBT films was observed accompanied by nucleation of Sr carbonate. On the other hand, SBT film dried at under 250°C and crystallized at 700°C shows high crystallinity of layer perovskite.

SBT film derived from conventional sol-gel solution used to show strong crystal orientation of c-axis. In case of modified sol-gel solution, RTA temperature and amount of added stabilizer influenced crystal orientation of film. So it was possible that to control crystal orientation of SBT films by adjust RTA condition and amount of stabilizer. Stability of sol-gel solution and property of SBT films were influenced by component of solvent, electric properties of SBT films especially I-V property were improved.

Using low temperature deposition process at 650°C, SBT films derived from modified sol-gel solution show superior ferroelectric properties to SBT thin films derived from conventional MOD solution.  相似文献   

10.
(001) oriented (Sr,Ba)Nb2O6 (SBN) thin films were deposited on MgO (001) single crystal substrates by the pulsed laser deposition method. Structural properties of SBN films were investigated using X-ray diffractometer. The microwave dielectric properties of SBN films were examined by calculating the scattering parameter obtained using a HP 8510C vector network analyzer with the frequency range 0.5–20 GHz at room temperature under the dc bias field of 0–80 kV/cm for interdigital capacitors (IDT) and coplanar waveguide (CPW) device based on SBN/MgO layer structure. Thick metal electrode patterns were fabricated by dc sputtering deposition, photolithography and etching process. The IDT device based on (001) oriented SBN films exhibited about 40% capacitance tunability with an electric field change of 80 kV/cm at room temperature, and the dielectric quality factor was about 20 at 12 GHz with no dc bias.  相似文献   

11.
ABSTRACT

Stress controlled epitaxial ferroelectric Ba0.5Sr0.5TiO3 (BST) films have been deposited on Gd2O3/SrTiO3 by pulsed laser deposition with oxygen background pressure of 200 mTorr at the deposition temperature of 750°C. In order to control the stress in BST films, oxygen pressures for Gd2O3 buffer layers have been varied from 0.1 to 100 mTorr, while that of BST films have been fixed at 200 mTorr. It has been found that the lattice parameters of the BST films deposited on Gd2O3 were changed. Furthermore, microwave properties of co-planar waveguide (CPW) fabricated on BST films were investigated by a HP 8510C vector network analyzer from 1–20 GHz. Large dielectric tunabilities were observed from the CPW's fabricated on BST films deposited on Gd2O3 layers deposited at low and high oxygen pressures, 0.1 and 100 mTorr, respectively.  相似文献   

12.
Abstract

Variations of the leakage current behaviors and interface potential barrier height (φ B ) of rf-sputter deposited (Ba, Sr)TiO3 (BST) thin films, with thickness ranging from 20nm to 150 nm are investigated as a function of the thickness and bias voltages. The top and bottom electrodes are dc-sputter-deposited Pt films. φ B critically depends on the BST film deposition temperature, postannealing atmosphere and time after the annealing. The postannealing under N2 atmosphere results in a high interface potential barrier height and low leakage current. Maintaining the BST capacitor in air for a long time reduces the φ B from about 2.4 eV to 1.6eV due to the oxidation. φ B is not so dependent on the film thickness in this experimental range. The leakage conduction mechanism is very dependent on the BST film thickness; the 20nm thick film shows tunneling current, 30 and 40 nm thick films show Schottky emission current and the thicker films show a mixed characteristics and bulk and interface limited currents although the mechanism is not clearly understood at this moment.  相似文献   

13.
Ni/ (Ba,Sr)TiO3 PTC composite of low resistivity was fabricated by a solid state route. A mildly reducing sintering atmosphere was employed to avoid the oxidation of nickel. Metallic nickel is the main chemical state after sintering in the mildly reducing sintering atmosphere. With the increase in nickel amount, the room-temperature resistivity declines and the PTC effect worsens. The quantum mechanical tunneling effect at the Ni–(Ba,Sr)TiO3 interface is presumably the prime factor in the deterioration of the PTC effect. PbO–B2O3–ZnO–SiO2 glass was added to modify the interface between nickel and (Ba,Sr)TiO3 ceramics. The intergranular phase introduced by the glass has an amorphous structure and exists at the interfaces and triple junctions of (Ba,Sr)TiO3 grains and nickel grains. No obvious diffusion occurs at the interface between crystalline (Ba,Sr)TiO3 grain and the intergranular phase. Also the added-glass improves the distribution of metal phase. The proper glass addition screens interfacial electron tunneling effect and improves the composite electrical properties. An abundance of the intergranular phase due to excess glass will, however, result in high room-temperature resistivity. The influences of nickel amount and glass amount on the microstructure evolution and electrical properties were analyzed.  相似文献   

14.
(Ba x Sr 1 m x )TiO 3 thin films were deposited in a planetary multi-wafer MOCVD reactor combined with a liquid delivery system using 0.35 molar solutions of Ba(thd) 2 and Sr(thd) 2 and a 0.4 molar solution of Ti(O-i-Pr) 2 (thd) 2 . The film growth on Pt-(111) was investigated within a wide parameter field, e.g., the deposition temperature was varied between 560C and 650C, which yields films with microstructures ranging from randomly oriented polycrystalline to perfectly (100)-textured columnar structures. Special emphasis is given to film stoichiometry: starting with (Ba 0.7 Sr 0.3 )TiO 3 the Group-II/Ti content was varied from 0.9 to 1.1 and the Ba content was reduced to the limit of pure SrTiO 3 films. The electrical properties of MIM structures were investigated after deposition of Pt top electrodes. The nominal thickness of the films was varied between 5 and 100 nm and permittivity and leakage current both are shown to depend strongly on the film thickness. These dependencies on the film thickness are analyzed within the phenomenological dead layer model. The dependence of the electrical properties on stoichiometry are discussed in detail.  相似文献   

15.
《Integrated ferroelectrics》2013,141(1):1305-1314
Compositionally graded (Bax,Sr1 ? x)TiO3 [BST] ferroelectric thin films have been received much attention in graded ferroelectric devices due to their unique properties, such as large pyroelectric coefficients, large polarization offset and small temperature coefficient of dielectric constant for microwave tunable devices. Compositionally graded BST thin films were deposited epitaxially on LaAlO3 [LAO] and Nb-doped SrTiO3 [STO:Nb] substrates by pulsed laser deposition. The planar and parallel dielectric properties of compositionally graded BST epitaxial thin films ware investigated in the frequency ranges of 100 Hz ~ 1 MHz as a function of the direction of the composition gradient with respect to the substrate at room temperature. The dielectric properties of the graded BST films depended strongly on the direction of the composition gradient with respect to the substrate. The graded ST → BT films grown on LAO and STO:Nb substrates exhibited a excellent dielectric properties than the graded BT → ST films.  相似文献   

16.
Thick BST films have been fabricated by a tape casting and firing method. Dielectric constants of BST films are changed from 5700 to 7000 at 1 MHz after focused beam annealing. Furthermore, surface morphologies and depth profile of chemistry have been altered after annealing. Especially, Sr atoms diffuse out to the surface, while Ba atoms diffuse into the center. The possibility of the surface alteration of the thick films have been clearly demonstrated in this study, which may applied for the integration of ferroelectrics and other dielectrics and/or conductors for low cost microwave tunable devices.  相似文献   

17.
The growth of Ba0.55Sr0.45TiO3 films on p-type silicon substrate with depletion and enhancement treatments have been conducted in this research. The aims were to examine film sensitivity as light sensor and value range, resolution, acuracy level, and their hysteresis as temperature sensor. The films were annealed at 800, 850, and 900 °C for 15 hours. In this work, enhancement BST of 850 °C was the best quality film and utilized as light and temperature sensors. Its implementation has been successfully conducted on ATMega8535 microcontroller-based automatic drying system model by exploiting the working principle of the BST films as automatic switch.  相似文献   

18.
《Integrated ferroelectrics》2013,141(1):877-885
(Ba0.5Sr0.5)TiO3 (BST) thin films were deposited by pulsed laser deposition (PLD) and investigated as a function of Ni dopant concentration in low and high frequency regions. In low frequency region (<10 MHz), the Ni-dopant concentration in BST films has a strong influence on the material properties including dielectric and tunable properties. Ni-doped (≤3 mol%) BST films showed denser, smoother morphologies and smaller grain sizes than those with 6 and 12 mol% Ni. Dielectric constant and loss of 3 mol% Ni-doped BST films were about 980 and 0.3%, respectively. In addition, tunability and figure of merit of 3 mol% doped BST films showed maximum values of approximately 39% and 108, respectively. In high frequency region (>1 GHz), the frequency tunability range at center frequency of undoped BST and 3 mol% Ni-doped BST coplanar waveguide (CPW) resonators showed 102 and 152 MHz, respectively at 30 V dc bias. The Ni-doped BST thin films are possible in applications of microwave tunable capacitors.  相似文献   

19.
High-dielectric-constant (Ba, Sr)TiO3 [BST] films were deposited by the liquid source chemical vapor deposition (CVD) method. The system consisted of a single-wafer, low-pressure thermal CVD reactor, a vaporizer for liquid source materials, and a shower-type gas nozzle head, giving stable BST film deposition on a 6-in. diam. substrate with uniform thickness and uniform chemical composition ratio. The source materials employed were Ba(DPM)2, Sr(DPM)2, and TiO(DPM)2 dissolved in tetrahydrofuran (THF), resulting in conformal step coverage of BST films at lowered substrate temperatures, where DPM denotes dipivaloylmethanate. Moreover, the two-step deposition technique was developed to restart protrusions formed on BST film surfaces at low temperatures, where the BST films consisted of a buffer layer and a main layer; the buffer layer was a layer about 60 Å thick of CVD-BST film annealed in N2. Thus, the two-step CVD deposition of BST films on Pt and Ru electrodes achieved an equivalent SiO2 thickness of teq ∼ 0.5 nm, a leakage current of JL ∼ 1.0 × 10−8 A/cm2 (at +1.1 V), and a dielectric loss of tan δ ∼ 0.01 at a total film thickness of 250 Å, along with conformal coverage of 80% for a trench with an aspect ratio of 0.65. Then, for BST films deposited on patterned electrodes 0.24 μm wide, 0.60 μm deep, and 0.15 μm high (each spaced by 0.14 μm), the capacitance was demonstrated to be increased without significant deterioration of the leakage current: the capacitance was increased in comparison with that for films on flat electrodes, by a factor corresponding to the increase in surface area due to sidewalls of storage-node-like pattern features. This capacitance increase reflects the most characteristic advantage of CVD, an excellent step coverage on microscopic pattern features. These electrical properties satisfy the specifications for capacitors for Gb-scale dynamic random access memories (DRAMs), giving a storage capacitance of more than 25 fF/cell for a stacked capacitor having a storage node 0.2 to 0.3 μm high. © 1998 Scripta Technica, Electr Eng Jpn, 125(1): 47–54, 1998  相似文献   

20.
Abstract

Barium titanate (BaTiO3) thin films with high (211) orientation have been prepared on Pt(111)/Si(100) substrates by R. F. magnetron sputtering at a substrate temperature between 550°C and 580°C in an Ar/O2 atmosphere. The I-V curve of a thin film capacitor (Ag-BaTiO3-Pt) has been measured and the C-V curves are obtained for frequencies between 100Hz and 1MHz. Neither the I-V curve nor the C-V curves are symmetrical and a very large change in the slope of all curves is found to occur at ~+0.5v.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号