首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

CeO2 and SrBi2Ta2O9 (SBT) thin films for MFISFET (metal-fcrroelectrics-insulator-semiconductor field effect transistor) were deposited by rf sputtering and pulsed laser deposition method, respectively. The effects of oxygen partial pressure during deposition for CeO2 films were investigated. The oxygen partial pressure significantly affected the preferred orientation, grain size and electrical properties of CeO2 films. The CeO2 thin films with a (200) preferred orientation were deposited on Si(100) substrates at 600°C. The films deposited under the oxygen partial pressure of 50 % showed the best C-V characteristics among those under various conditions. The leakage current density of films showed order of the 10?7~10?8 A/cm2 at 100 kV/cm. The SBT thin films on CeO2/Si substrate showed dense microstructure of polycrystalline phase. From the C-V characteristics of MFIS structure composed of the SBT film annealed at 800°C, the memory window width was 0.9 V at ±5 V. The leakage current density of Pt/SBT/CeO2/Si structure annealed at 800°C was 4×10?7 A/cm2 at 5 V.  相似文献   

2.
Abstract

The dependence of morphology of SrBi2Ta2O9 (SBT) deposited by Metal Organic Decomposition (MOD) on film thickness and annealing temperature during the crystallization anneal was investigated. From Atomic Force Microscope (AFM) images of these films it can be seen that nucleation and grain growth strongly depends on SBT thickness which also affects the electrical characteristics of the correspondent Pt/SBT/Pt-capacitors. In this work results of a morphological study of SBT films with thicknesses between 40 and 110nm and annealing temperatures between 650°C and 725°C will be presented.  相似文献   

3.
Abstract

Sol-gel solutions were synthesized by using various alkoxides of polyhydric alcohol, carboxylate and stabilizer. Stability of modified sol-gel solution was good enough to keep its properties after at least three months although that of ordinary sol-gel solution is not good.

SBT films were fabricated on Pt(200nm)/Ti(20nm)SiO2(500nm)/Si substrate at under 700°C by using modified sol-gel solution. Range of drying temperature was 200 to 400°C and that of RTA was 550 to 700°C. At high drying temperature, decrease of crystallinity for SBT films was observed accompanied by nucleation of Sr carbonate. On the other hand, SBT film dried at under 250°C and crystallized at 700°C shows high crystallinity of layer perovskite.

SBT film derived from conventional sol-gel solution used to show strong crystal orientation of c-axis. In case of modified sol-gel solution, RTA temperature and amount of added stabilizer influenced crystal orientation of film. So it was possible that to control crystal orientation of SBT films by adjust RTA condition and amount of stabilizer. Stability of sol-gel solution and property of SBT films were influenced by component of solvent, electric properties of SBT films especially I-V property were improved.

Using low temperature deposition process at 650°C, SBT films derived from modified sol-gel solution show superior ferroelectric properties to SBT thin films derived from conventional MOD solution.  相似文献   

4.
ABSTRACT

Thin film capacitors with SrTiO3 (STO) as dielectric and Pt as electrode material have been prepared by ion beam sputtering. The as-deposited film is amorphous and exhibits a crystallization temperature around 321°C as proved by X-ray diffraction. The effect of post annealing on the crystalline quality of the films was systematically studied by x-ray diffraction and Atomic Force microscopy (AFM). The temperature and frequency dependent dielectric properties were measured from 30°C to 200°C and 0.01 Hz to 105 Hz, respectively. The influence of the microstructure of SrTiO3 thin films on their electrical properties was investigated through an extensive characterization. The electrical properties of SrTiO3 films appear to be strongly depending on the annealing temperatures. The capacitance voltage (C-V) characteristics reveal an improvement of capacitance density with increasing the annealing temperature.  相似文献   

5.
Abstract

In this work, the microstructural defects in SrBi2Ta2O9 (SBT) ferroelectric thin films were investigated at the atomic-scale by high-resolution transmission electron microscopy (HRTEM). A stacking fault with an extra inserted Bi-O plane normal to the c-axis was observed in SBT film with 10mol% excess bismuth prepared by metalorganic deposition. Edge dislocations with an average space about 3nm were observed at the small misorientation angle (8.2°) tilt grain boundary of SBT film with (001)-orientation prepared by pulsed laser deposition. The Burgers vector b for the edge dislocation was determined to be 1/2[110]α0, where α0 is the parameter of SBT unit cell. Chemical compositions of grains and grain boundaries in SBT films annealed in forming gas at 450°C and 500°C for 60 minutes were analyzed by using energy dispersive spectra at the nano-scale. Effects of the microstructural defects and microchemistry of the grain boundaries on the leakage current of SBT films are briefly discussed.  相似文献   

6.
Abstract

A modification of the conventional pulsed laser deposition technique was employed, whereby a low energy electron emitting filament was placed between the target and the substrate (-20 V filament/substrate bias) in order to produce reactive species (O2- and O?) during deposition. Using this modification, epitaxial thin films of PbZrxTi1?xO3 (PZT, 0 ≤ × ≤ 0.6) were prepared in situ on virgin (100) MgO and (100) Pt/(100) MgO substrates at a substrate temperature of 550°C and in an oxygen ambient (0.3 Torr). The topography of films prepared without a filament on virgin MgO were porous and composed of grains of about 1000 Å in diameter. As the emission current was increased from 0 to 400 μA, the grain size decreased to less than 100 Å with a concomitant decrease in the porosity. The nucleation of crystallites of other orientations was observed at emission currents greater than about 500 μA. Trilayer structures (Pt/PZT/Pt/<100>MgO) were fabricated for electrical measurements. Non-filament-assisted PZT cells usually failed because of a high probability of conductive paths through the PZT layer. Filament-assisted films were much less prone to this problem. Typical remanent polarizations and coercive fields were 15–20 μC/cm2 and 30–50 kV/cm, respectively.  相似文献   

7.
Abstract

Bi–layered ferroelectric SrBi2Ta2O9 (SBT) films were successfully prepared on Pt/Ti/SiO2/Si substrates at 650°C by a modified rf magnetron sputtering technique. The SBT films annealed for 1 h in O2 (760 torr) and again for 30 min in O2 (5 torr) at 650°C show a average grain size of about 49 nm. The SBT films annealed at 65 0°C have a remanent polarization (Pr) of 6.0 μC/cm2 and coercive field (Ec) of 36 kV/cm at an excitation voltage of 5 V. The films showed fatigue–free characteristics up to 4.0 × 1010 switching cycles under 5 V bipolar pulse. The retention characteristics of SBT films looked very promosing up to 1.0 × 105 s.  相似文献   

8.
Abstract

BaTiO3 (BTO) and SrTiO3 (STO) and BaxSr1-xTiO3 (x=0–1) (BST) thin films have been epitaxially grown on LaAlO3 and SrTiO3:Nb at a substrate temperature of 800°C using a new liquid source delivery technique called injection MOCVD. A X-ray study evidenced FWHMs of 0.16° and 0.45° for SrTiO3 and BaTiO3 respectively.

In a next step the feasibility of BaTiO3/SrTiO3 superlattices was studied. The multilayers obtained were epitaxially grown on LaAlO3 as well as on SrTiO3:Nb. The structural properties were studied using X-ray diffraction as well as XPS, proving the low interface roughness of 1nm. The XPS study also confirmed the absence of carbon contamination in the film.  相似文献   

9.
Lead- and bismuth-free Ba(Ti1 ? x Zr x )O3 (BTZ) thin films were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates by the chemical solution deposition (CSD) process. The single phase BTZ thin films were obtained at 650°C by conventional process and the control of lattice parameter a was possible by Zr substitution. As the D-E hysteresis loops and J-V characteristics depended on the precipitates on film surface, the fabrication process was reexamined by 2-step sintering process. Consequently the decreasing of first sintering time was able to prevent the precipitates, and the larger grain of about 40–50 nm were obtained by additional sintering for 2 hour.  相似文献   

10.
《Integrated ferroelectrics》2013,141(1):915-922
Ba(Mg1/3Ta2/3)O3 (BMT) microwave dielectric thin films were successfully synthesized by a modified pulsed laser deposition (PLD) process, which includes low temperature (200°C) deposition and high temperature (>500°C) annealing. Crystalline structured BMT thin films were obtained when the PLD-deposited films were post-annealed at a temperature higher than 500°C in oxygen atmosphere. The characteristics of BMT thin film, including crystallinity, grain size, film roughness, and dielectric properties were improved with annealing temperature, achieving dielectric constant K = 23.5 and dissipation factor tan δ = 0.015 (at 1 MHz) for the 800°C-annealed films.  相似文献   

11.
Abstract

A novel type of down-flow LSMCVD (Liquid Source Mist CVD) reactor was developed to prepare a high dielectric BST thin film on Pt electrode on Si wafer. Barium acetate [Ba (OOCCH3)2], strontium acetate [Sr (OOCCH3)2], and titanium isoproxide [Ti (OC3H7 i )4] were used as metal sources. Metal sources were dissolved in acetic acid, 1-butanol, or 2-methoxyethanol. BST [Ba/(Ba + Sr) = 0.7] film annealed on Pt/Ti/SiO2/Si above 650°C was polycrystalline. BST film has a (110) preferred orientation with increasing temperature. Surface roughness of BST film and grain size increased with increasing temperature. The metal-oxygen bond was formed at 650°C as shown in the spectra of FTIR. The depth profiles of elements of BST thin films indicated a uniform composition throughout the film. BST films annealed at 750°C showed a dielectric constant and a tanδ of 390 (thickness: 150 nm) and 0.06 at a frequency of 100 kHz, respectively. The behavior of capacitance of the BST film with bias voltage showed paraelectric property. BST film annealed at 750°C had the leakage current density of 3.2 (μA/cm2) at a bias voltage of 2V.  相似文献   

12.
Abstract

Perovskite SrRuO3 (SRO) layer was, for the first time, been successfully synthesized by using metal-organic decomposition (MOD) process. The presence of SRO buffer layer on Pt(Si) substrates has significantly enhanced the crystallization and densification behavior of the subsequently deposited Pb(Zr0.52Ti0.48)O3 films. The pyrochlore free perovskite phase can be obtained by post-annealing the PZT/SRO/Pt(Si) films at 500°C, which is 50°C lower than that needed in PZT/Pt(Si) films. The fine grain (~0.3 μm) microstructure can be attained by post-annealing at 650°C for PZT/SRO/Pt(Si) films and 700°C for PZT/Pt(Si) films. The ferroelectric hysteresis properties of the two PZT films are comparable to each other. The leakage current properties of PZT/SRO/Pt(Si) films increased pronouncedly with post-annealing temperature, resulting in inferriar leakage behavior to PZT/Pt(Si) films.  相似文献   

13.
The paper reports on synthesis, sintering and microstructure of Bi2/3Cu3Ti4O12, a lead-free, high-permittivity material with internal barrier layer capacitor behavior. Complex impedance and capacitance of the ceramic and thick films were studied as a function of frequency (10 Hz–2 MHz) and temperature (−170 to 400°C). Dc electrical conductivity of the samples was measured in the temperature range 20–400°C. Broad and high maxima of dielectric permittivity versus temperature plots were observed reaching 60,000 for ceramic and 5,000 for thick films. The maxima decrease and shift to higher temperatures with increasing frequency. Two arcs ascribed to grains and grain boundaries were found in the plots of imaginary part versus real part of impedance. Analysis of the impedance spectra indicates that Bi2/3Cu3Ti4O12 ceramic could be regarded as electrically heterogeneous system composed of semiconducting grains and less conducting grain boundaries. The developed thick film capacitors with dielectric layers based on Bi2/3Cu3Ti4O12 exhibit dense microstructure, good cooperation with Ag electrodes, high permittivity up to 5,000 and relatively low temperature coefficient of capacitance in the temperature range 100–300°C. Broad maxima in the dielectric permittivity versus temperature curves may be attributed to Maxwell–Wagner relaxation.  相似文献   

14.
《Integrated ferroelectrics》2013,141(1):1429-1436
Lead zirconate titanate [Pb(Zr x Ti1 ? x )O3, PZT] films were grown on (100), (110) and (111)SrRuO3//SrTiO3 substrates at 600°C by metalorganic chemical vapor deposition (MOCVD). The crystal orientation dependence of the growth rate was investigated for these films. The growth rate of (100)-/(001)-oriented epitaxial films was approximately 1.7 and 2.0 times higher than that of (110)-/(101)- and (111)-/(11&1macr;)-oriented epitaxial films, respectively. On the other hand, the growth rate of (100)-/(001)-preferred oriented PZT films grown on (111)Pt/TiO2/SiO2/(100)Si substrates was almost the same with that of (100)-/(001)-oriented epitaxial films. The deposition rate of these films was approximately 1.5 μm/h. High growth rate of (100)-/(001)-oriented PZT grains makes (100)-/(001)-preferred orientation on (111)Pt/TiO2/SiO2/(100)Si substrate. From transmission electron microscopy observation, (100)-/(001)-oriented grains were found to be directly grown on (111)-oriented Pt grains without obvious another oriented grains. As a result, orientation-controlled PZT films were successfully grown on (100)Si substrates having (111)-oriented Pt bottom electrodes.  相似文献   

15.
ABSTRACT

Lithium-doped K0.5Na0.5NbO3 (KLNN) films were fabricated by chemical solution deposition on Pt/TiO2/SiO2/Si substrates. Homogeneous and stable precursor solutions were prepared by controlling the reaction of starting metal alkoxides. Perovskite KLNN single-phase thin films were successfully synthesized on Pt/TiO x /SiO2/Si substrates. The 0.75-μ m-thick KLNN film annealed at 650°C exhibited ferroelectric polarization hysteresis loops at ?250°C. The loop at room temperature was round, indicating the film contained leakage components. The dielectric constant under zero bias was 490 at room temperature. A typical upside-down butterfly DC bias-capacitance curve was obtained in the KLNN film capacitors at room temperature, indicating that polarization reversal occurred in the obtained KLNN films.  相似文献   

16.
Abstract

Three important aspects of the preparation of SrTiO3 thin films by MOCVD are discussed in detail in view of the application of these films as the capacitor dielectric of Gbit-scale DRAMs: CVD reactions in the Sr(DPM)2-Ti(i-OC3H7)4-O2 system, step coverage and relations between microstructure and electrical properties. The effect of the substrate temperature on the Sr and Ti deposition rates was first investigated for thermal and ECR CVD SrTiO3 films. SrO and TiO2 deposition by thermal CVD above 550°C were found to be controlled by the surface reaction and gas transport, respectively, whereas both SrO and TiO2 deposition are controlled by gas transport for ECR CVD at 450 to 600°C. The influence of the Sr and Ti deposition regimes on the step coverage of SrO, TiO2 and SrTiO3 were then assessed. SrO films prepared by thermal CVD at 600°C exhibited the best step coverage, indicating that a relation exists between reaction controlled deposition and good step coverage. The effect of the film composition and film thickness on the microstructure of SrTiO3 thin films were finally investigated and correlations were made to other analyzed physical and electrical properties. Polycrystalline perovskite phase SrTiO3 films were obtained for a composition 0.7 ≤ Sr/Ti ≤ 1.2. The best crystallinity, maximum permittivity and maximum refractive index were obtained for Sr/Ti = 0.95. Titanium rich films are thought to be composed of a mixture of a titanium rich amorphous phase and crystalline SrTiO3, and strontium rich films are believed top correspond to a (SrTiO3)m (SrO)n structure. The dielectric constant slowly decreased as the film thickness was reduced. The sharp decrease observed near 400–500 Å could be due to the existence of some perturbed layer at the interface with one or both of the electrodes  相似文献   

17.
PbZr0.58Ti0.42O3 (PZT) ferroelectric thin films with Bi3.25La0.75Ti3O12 (BLT) buffer layer of various thickness were fabricated on Pt/TiO2/SiO2/p-Si(100) substrates by rf-magnetron sputtering method. The pure PZT film showed (111) preferential orientation in the XRD patterns, and the PZT/BLT films showed (110) preferential orientation with increasing thickness of the BLT layer. There were no obvious diffraction peaks for the BLT buffer layer, for its thin thickness in PZT/BLT multilayered films. There were the maximum number of largest-size grains in PZT/BLT(30 nm) film among all the samples from the surface images of FESEM. The growth direction and grain size had significant effects on ferroelectric properties of the multilayered films. The fatigue characteristics suggested that 30-nm-thick BLT was just an effective buffer layer enough to alleviate the accumulation of oxygen vacancies near the PZT/BLT interface. The comparison of these results suggests that the buffer layer with an appropriate thickness can improve the ferroelectric properties of multilayered films greatly.  相似文献   

18.
Abstract

Barium titanate (BaTiO3) thin films with high (211) orientation have been prepared on Pt(111)/Si(100) substrates by R. F. magnetron sputtering at a substrate temperature between 550°C and 580°C in an Ar/O2 atmosphere. The I-V curve of a thin film capacitor (Ag-BaTiO3-Pt) has been measured and the C-V curves are obtained for frequencies between 100Hz and 1MHz. Neither the I-V curve nor the C-V curves are symmetrical and a very large change in the slope of all curves is found to occur at ~+0.5v.  相似文献   

19.
Abstract

Platinum thin films were deposited by low pressure chemical vapor deposition (LPMOCVD) on SiO2/Si and (Ba, Sr)TiO3/Pt/SiO2/Si substrates using Pt-hexafluoroacetylacetonate at various deposition temperatures. The shiny mirror-like Pt thin films of a high electrical conductivity were obtained, when the deposition temperature is between 325°C and 350°C, whereas above 375°C Pt thin films showed rough surface as well as poor adhesion property to oxide substrate. Pt thin films had a good step coverage of 90%. The results indicate that LPMOCVD Pt thin films can be applied for the top electrode of high dielectric thin film, which is thought to be one of the best candidate materials for a capacitor of ULSI DRAM.  相似文献   

20.
ABSTRACT

In this work, metal-ferroelectric-insulator-silicon (MFIS) devices were fabricated using HfSiON as buffer layers and their electrical properties were studied. Ultra-thin HfSiON films were fabricated by electron-beam evaporation at room temperature and post-annealed using different parameters such as temperature, time in O2. By annealing a 2 nm-thick HfSiON film at 800°C for 60s in O2, a negligible hysteresis loop and small equivalent oxide thickness of 2.3 nm were obtained with a corresponding leakage current density of 6.8 × 10? 5 A/cm2 at a voltage shifted from the flat band voltage by 1 V. In the fabrication of MFIS diodes, Sr0.8Bi2.2Ta2O9 (SBT) films with 400 nm thickness were formed by chemical solution deposition. For Pt/SBT (400 nm)/HfSiON(2 nm)/Si diodes, a memory window of 0.8 V in width was observed during double capacitance-voltage sweep between +5 and –5 V. At the same time, excellent data retention properties were observed. The high and low capacitances in the hysteresis loop were well distinguishable even after 24 h had elapsed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号