首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The frequencies of isolation and susceptibilities to antimicrobial agents were investigated on 704 bacterial strains isolated from patients with urinary tract infections (UTIs) in 11 hospitals during the period of June 1995 to May 1996. Of the above bacterial isolates, Gram-positive bacteria accounted for 29.8% and a majority of them were Enterococcus faecalis. Gram-negative bacteria accounted for 70.2% and most of them were Escherichia coli. Susceptibilities of several isolated bacteria to antimicrobial agents were as followed; 1. Enterococcus faecalis Ampicillin (ABPC) and imipenem (IPM) showed the highest activities against E. faecalis isolated from patients with UTIs. The MIC90S of them were 1 microgram/ml. Vancomycin (VCM) and piperacillin (PIPC) were also active with the MIC90S of 2 micrograms/ml and 4 micrograms/ml, respectively. The others had low activities with the MIC90S of 16 micrograms/ml or above. 2. Staphylococcus aureus including MRSA VCM showed the highest activities against S. aureus isolated from patients with UTIs. Its MIC90 was 1 microgram/ml against both S. aureus and MRSA. Arbekacin (ABK) was also active with the MIC90 of 2 micrograms/ml. The other except minocycline (MINO) had very low activities with the MIC90S of 64 micrograms/ml or above. 3. Staphylococcus epidermidis ABK and MINO showed the strongest activities against S. epidermidis isolated from patients with UTIs. The MIC90S of them were 0.25 microgram/ml. VCM was also active with the MIC90 of 1 microgram/ml. The MIC90S of cephems ranged from 2 micrograms/ml to 16 micrograms/ml in 1994, but they ranged from 8 micrograms/ml to 128 micrograms/ml in 1995. These results indicated that some resistances existed among S. epidermidis to cephems. 4. Streptococcus agalactiae All drugs except gentamicin (GM) were active against S. agalactiae. ABPC, cefmenoxime (CMX), IPM, erythromycin (EM), clindamycin (CLDM) and clarithromycin (CAM) showed the highest activities. The MICs for all strains were lower than 0.125 microgram/ml. The MIC90S of the others were 2 micrograms/ml or below. 5. Citrobacter freundii IPM showed the highest activity against C. freundii isolated from patients UTIs. Its MIC90 was 1 microgram/ml. GM was also active with the MIC90 of 2 micrograms/ml. Cefpirome (CPR), cefozopran (CZOP) and amikacin (AMK) were also active with the MIC90S of 4 micrograms/ml. Penicillins and cephems except CMX, CPR and CZOP showed low activities with MIC90S of 256 micrograms/ml or above. 6. Enterobacter cloacae IPM showed the highest activity against E. cloacae. The MICs for all strains were equal to or lower than 1 microgram/ml. MINO and tosufloxacin (TFLX) were also active with the MIC90S of 8 micrograms/ml. Penicillins and cephems except CPR and CZOP showed lower activities with the MIC90S of 256 micrograms/ml or above. 7. Escherichia coli. Most of the antimicrobial agents were active against E. coli. Particularly CPR, CZOP and IPM showed the highest activities against E. coli. The MICs for all strains were equal to or lower than 0.5 microgram/ml. CMX and TFLX were also active with the MIC90S of 0.125 microgram/ml or below. Penicillins were slightly active with MIC90S of 128 micrograms/ml or above. 8. Klebsiella pneumoniae K. pneumoniae was susceptible to all drugs except penicillins, with MIC90S of 2 micrograms/ml or below. Carumonam (CRMN) had the strongest activity against K. pneumoniae, the MICs for all strains were equal to or lower than 0.125 microgram/ml. Comparing with the result of 1994, the sensitivities of K. pneumoniae against all drugs had obviously changed into a better state. For example, the MIC90S of cephems ranged from 0.25 microgram/ml to 16 micrograms/ml in 1994, but they were all lower than 2 micrograms/ml in 1995. 9. Proteus mirabilis P. mirabilis was susceptible to a majority of drugs. CMX, ceftazidime (CAZ), cefixime (CFIX), and CRMN showed the highest activities against P. mirabilis isolated from patients with UTIs. MICs of CRMN for all  相似文献   

2.
The bacteria isolated from the patients with lower respiratory tract infections were collected by institutions located throughout Japan, since 1981. Ikemoto et al. have been investigating susceptibilities of these isolates to various antibacterial agents and antibiotics, and characteristics of the patients and isolates from them each year. Results obtained from these investigations are discussed. In 16 institutions around the entire Japan, 557 strains of presumably etiological bacteria were isolated mainly from the sputa of 449 patients with lower respiratory tract infections during the period from October 1996 to September 1997. MICs of various antibacterial agents and antibiotics were determined against 98 strains of Staphylococcus aureus, 93 strains of Streptococcus pneumoniae, 84 strains of Haemophilus influenzae, 84 strains of Pseudomonas aeruginosa (non-mucoid strains), 17 strains of Pseudomonas aeruginosa (mucoid strains), 31 strains of Moraxella subgenus Branhamella catarrhalis, 21 strains of Klebsiella pneumoniae etc., and the drug susceptibilities of these strains were assessed except for those strains that died during transportation. 1) S. aureus S. aureus strains for which MICs of oxacillin (MPIPC) were higher than 4 micrograms/ml (methicillin-resistant S. aureus) accounted for 67.3%. The frequency of the drug resistant bacteria increased comparing to the previous year's 52.7%. Arbekacin (ABK) and vancomycin (VCM) showed the highest activities against both S. aureus and MRSA with MIC80s of 1 microgram/ml. 2) S. pneumoniae Imipenem (IPM) and panipenem (PAPM) of carbapenems showed the most potent activities with MIC80s of 0.063 microgram/ml. Faropenem (FRPM) showed the next potent activity with MIC80 of 0.125 microgram/ml. The other drugs except erythromycin (EM), clindamycin (CLDM) and tetracycline (TC) were active against S. pneumoniae tested with MIC80s of 8 micrograms/ml or below. 3) H. influenzae The activities of all drugs were potent against H. influenzae tested with MIC80s of 4 micrograms/ml or below. Cefotiam (CTM), cefmenoxime (CMX), cefditoren (CDTR) and ofloxacin (OFLX) showed the most potent activities with MIC80s of 0.063 microgram/ml. 4) P. aeruginosa (mucoid strains) Tobramycin (TOB) showed the most potent activity against P. aeruginosa (mucoid strains) with MIC80 of 1 microgram/ml. Ceftazidime (CAZ), cefsulodin (CFS), IPM, gentamicin (GM), ABK and ciprofloxacin (CPFX) showed the next potent activities, with MIC80s of 2 micrograms/ml. The MIC80s of the other drugs ranged from 4 micrograms/ml to 16 micrograms/ml. 5) P. aeruginosa (non-mucoid strains) TOB and CPFX showed the most potent activities against P. aeruginosa (non-mucoid strains) with MIC80s of 1 microgram/ml. The MIC80s of piperacillin (PIPC) and cefoperazone (CPZ) were 16 micrograms/ml in 1995, and they were 64 micrograms/ml in 1996. 6) K. pneumoniae All drugs except ampicillin (ABPC) were active against K. pneumoniae. CMX, cefpirome (CPR), cefozopran (CZOP) and carumonam (CRMN) showed the most potent activities against K. pneumoniae with MIC80s of 0.125 microgram/ml. The MIC80s of the other drugs ranged from 0.25 microgram/ml to 2 micrograms/ml. 7) M.(B) catarrhalis Against M.(B.) catarrhalis, all drugs showed good activities with MICs of 4 micrograms/ml or below. IPM and minocycline (MINO) showed the most potent activities with MICs of 0.063 microgram/ml. Also, we investigated year to year changes in the characteristics of patients, their respiratory infectious diseases, and the etiology. Patients' backgrounds were examined for 557 isolates from 449 cases. The examination of age distribution indicated that the proportion of patients with ages over 60 years was 71.0% of all the patients showing a slight increase over that in 1994. Proportions of diagnosed diseases were as follows: Bacterial pneumonia and chronic bronchitis were the most frequent with 35.9% and 30.3% respectively. They were followed by bronchiectasis with a proportion of 10.  相似文献   

3.
The frequencies of isolation and susceptibilities to antimicrobial agents were investigated on 680 bacterial strains isolated from patients with urinary tract infections (UTIs) in 10 hospitals during the period of June 1996 to May 1997. Of the above bacterial isolates, Gram-positive bacteria accounted for 30.4% and a majority of them were Enterococcus faecalis. Gram-negative bacteria accounted for 69.6% and most of them were Escherichia coli. Susceptabilities of several isolated bacteria to antimicrobial agents were as followed; 1. Enterococcus faecalis Ampicillin (ABPC) showed the highest activity against E. faecalis isolated from patients with UTIs. Its MIC90 was 1 microgram/ml. Imipenem (IPM) and vancomycin (VCM) were also active with the MIC90S of 2 micrograms/ml. The others had low activities with the MIC90S of 16 micrograms/ml or above. 2. Staphylococcus aureus including MRSA Arbekacin (ABK) and VCM showed the highest activities against both S. aureus and MRSA isolated from patients with UTIs. The MIC90S of them were 1 or 2 micrograms/ml. The others except minocycline (MINO) had low activities with the MIC90S of 32 micrograms/ml or above. 3. Staphylococcus epidermidis ABK and VCM showed the strongest activities against S. epidermis isolated from patients with UTIs. The MICs for all strains were equal to or lower than 2 micrograms/ml. Cefazolin (CEZ), cefotiam (CTM) and cefozopran (CZOP) were also active with the MIC90S of 4 micrograms/ml. Compared with antimicrobial activities of cephems is 1995, the MIC90S of them had changed into a better state. They ranged from 4 micrograms/ml 16 micrograms/ml in 1996. 4. Streptococcus agalactiae All drugs except MINO were active against S. agalactiae. ABPC, CZOP, IPM, and clarithromycin (CAM) showed the highest activities. The MICs for all strains were equal to or lower than 0.125 micromilligrams. Tosufloxacin (TFLX) and VCM were also active with the MIC90S of 0.5 micromilligrams. 5. Citrobacter freundii Gentamicin (GM) showed the highest activity against C. freundii isolated from patients with UTIs. Its MIC90 was 0.5 micrograms/ml. IPM and amikacin (AMK) were also active with the MIC90S of 1 microgram/ml and 2 micrograms/ml, respectively. Cefpirome (CPR) and CZOP were also active with the MIC90S of 8 micrograms/ml. The MIC90S of the others were 16 micrograms/ml or above. 6. Enterobacter cloacae IPM showed the highest activity against E. cloacae. The MICs for all strains were equal to or lower than 0.5 microgram/ml. The MIC90S of ciprofloxacin (CPFX) and TFLX were 1 microgram/ml, the MIC90 of AMK was 2 micrograms/ml, the MIC90S of CZOP, GM and ofloxacin (OFLX) were 4 micrograms/ml. The MIC50S of cephems except CEZ, cefmetazole (CMZ) and cefaclor (CCL) had changed into a better state in 1996, compared with those in 1995. 7. Escherichia coli All drugs except penicillins and MINO were active against E. coli. Particularly CPR, CZOP and IPM showed the highest activities against E. coli. The MIC90S of them were 0.125 microgram/ml or below. Among E. coli strains, those with low susceptibilities to cephems except CEZ, cefoperazone (CPZ), latamoxef (LMOX) and CCL have increased in 1996, compared with those in 1995. 8. Klebsiella pneumoniae K. pneumoniae was susceptible to all drugs except penicillins, with the MIC90S of 2 micrograms/ml or below. CPR had the strongest activity, the MICs for all strains were equal to or lower than 0.25 microgram/ml. Flomoxef (FMOX), cefixime (CFIX), CZOP and carumonam (CRMN) were also active with the MIC90S of 0.125 microgram/ml or below. 9. Pseudomonas aeruginosa All drugs except quinolones were not so active against P. aeruginosa with the MIC90S were 32 micrograms/ml or above. Quinolones were more active in 1996 than 1995. The MIC90S of them were between 4 micrograms/ml and 8 micrograms/ml, and the MIC50S of them were between 1 microgram/ml and 2 micrograms/ml. 10. Serratia marcescens GM showed the highest activity against S. marcescens. Its MIC90 was 1 micro  相似文献   

4.
The frequencies of isolation and susceptibilities to antimicrobial agents were investigated on 657 bacterial strains isolated from patients with urinary tract infections in 10 hospitals during the period of June 1993 to May 1994. Of the above total bacterial isolates, Gram-positive bacteria accounted for 28.3% and a majority of them were Enterococcus faecalis. Gram-negative bacteria accounted for 71.7% and most of them were Escherichia coli. 1. Enterococcus faecalis Ampicillin (ABPC), imipenem (IPM) and vancomycin (VCM) showed the highest activities against E. faecalis isolated from patients with urinary tract infections. The MIC90s of them were 2 micrograms/ml. Piperacillin (PIPC) was also active with the MIC90 of 8 micrograms/ml. The others were not so active with the MIC90s of 32 micrograms/ml or above. 2. Staphylococcus aureus including MRSA VCM showed the highest activities against S. aureus isolated from patients with urinary tract infections. Its MIC90 was 1 microgram/ml. Arbekacin (ABK) was also active with the MIC90 of 2 micrograms/ml. The others were not so active with the MIC90s of 32 micrograms/ml or above. 3. Staphylococcus epidermidis VCM showed the strongest activity against S. epidermidis isolated from patients with urinary tract infections. Its MIC90 was 1 microgram/ml. ABK was also active with the MIC90 of 4 micrograms/ml. The others except ABPC were not so active with the MIC90s of 32 micrograms/ml or above. 4. Streptococcus agalactiae Most of the agents were active against S. agalactiae isolated from patients with urinary tract infections. Penicillins, cephems, erythromycin (EM), and clindamycin (CLDM) showed the highest activities. The MIC90s of them were 0.25 microgram/ml or below. Amikacin (AMK) and minocycline (MINO) showed somewhat low activities with the MIC90s of 16 micrograms/ml. 5. Citrobacter freundii IPM showed the highest activities against C. freundii isolated from patients with urinary tract infections. Its MIC90 was 2 micrograms/ml. Cefozopran (CZOP) and gentamicin (GM) were also active with the MIC90s of 8 micrograms/ml. Penicillins and cephems generally were not so active. 6. Enterobacter cloacae IPM and GM showed the highest activities against E. cloacae. The MIC90s of them were 1 microgram/ml. CZOP and tosufloxacin (TFLX) were also active with the MIC90s of 8 micrograms/ml. Penicillins and cephems except CZOP showed lower activities with the MIC90s of 64 micrograms/ml or above. 7. Escherichia coli Most of antimicrobial agents were active against E. coli. Flomoxef (FMOX), CZOP, IPM, CPFX and TFLX showed the highest activities against E. coli. The MIC90s of them were 0.125 microgram/ml or below. Cefmenoxime (CMX), ceftazidime (CAZ), cefuzonam (CZON), latamoxef (LMOX), carumonam (CRMN), norfloxacin (NFLX) and ofloxacin (OFLX) were also active with the MIC90s of 0.25 microgram/ml. Penicillins and MINO were not so active with the MIC90s of 32 micrograms/ml or above. 8. Klebsiella pneumoniae CZOP, IPM and CRMN showed the highest activities against K. pneumoniae. The MIC90s of them were 0.125 microgram/ml or below. CAZ, CZON, CFIX, CPFX and TFLX were also active the MIC90s of 0.25 microgram/ml. Penicillins were not so active with the MIC90s of 128 micrograms/ml or above. 9. Proteus mirabilis P. mirabilis was susceptible to a majority of drugs. CMX, CAZ, CZON, LMOX, CFIX, CRMN and CPFX showed the highest activities against P. mirabilis isolated from patients with urinary tract infections. The MIC90s of them were 0.125 microgram/ml or below. MINO was not so active with the MIC90 of 256 micrograms/ml or above. 10. Pseudomonas aeruginosa Most of the agents were not so active against P. aeruginosa. IPM showed MIC90 of 8 micrograms/ml.  相似文献   

5.
The incidence of pathogenic bacteria in respiratory tract infections in 1994 and 1995 was investigated using quantitative cultures of sputa from patients with the infections in our department. Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis were isolated at high rates (70.5% in 1994 and 73.8% in 1995) from the specimens of out-patients, and the incident rates were similar to the past data. The antimicrobial susceptibilities of these three pathogens were examined with the agar dilution method. The incidence of penicillin (Pc) resistant S. pneumoniae against which MIC of Pc-G was higher than 0.125 microgram/ml was markedly increased from 24% in 1994 to 34.9% in 1995. Most of the Pc resistant isolates were also resistant to other antibiotics including erythromycin, minocycline and tosufloxacin. Serotype of strains against which MIC of Pc-G was higher than 1.0 microgram/ml was 19. The ratios of beta-lactamase-producing strains among H. influenzae isolated in 1994 and 1995 were 20 and 15.8%, respectively, which were slightly higher than those in the past. One quinolone resistant strain was isolated in this study. Although the ratio of beta-lactamase-producing strains among M. catarrhalis was as high (96.7%) as in the past, no increased resistance against the drugs examined was observed.  相似文献   

6.
Antimicrobial activity of 6 macrolides was determined using a micro-broth dilution method, against 535 clinical isolates of 22 species, which were isolated in 1996 from 325 facilities in Japan. Results were as follows. 1. In general, antimicrobial activities of 14-membered macrolides were higher than those of 16-membered macrolides. The antimicrobial activities of 14-membered macrolides were in the order of clarithromycin (CAM), erythromycin (EM), roxithromycin (RXM). Among 16-membered macrolides, rokitamycin (RKM) was the most potent, josamycin (JM) was next potent followed by midecamycin (MDM). More numbers of highly-resistant strain of > 100 micrograms/ml were recognized in 14-membered macrolides than in 16-membered macrorides. 2. Most of S. pyogenes (group A) strains were distributed in the susceptible range and almost none was found in the resistant range. 3. S. pneumoniae strains were distributed widely from the susceptible range to the highly resistant range, and as high as 37.1% fell into the high resistance of > 100 micrograms/ml range. 4. Against Peptostreptococcus spp. and MRSA, 16-membered macrolides were more effective than 14-membered macrorlides, and their antibacterial activities were in the order of RKM, JM, MDM. Ratio of high-resistant strains of > 100 micrograms/ml against 14-membered macrolides was much higher than that against 16-membered macrolies. 5. Most of M. (B.) catarrhalis strains were distributed in the susceptible range of < or = 1.56 micrograms/ml, and most of H. influenzae strains were distributed within the moderately resistant and the resistant ranges. 6. In M. (B.) catarrhalis and H. influenzae, no correlation between macrolide resistance and beta-lactamase production was recognized. 7. Most of C. jejuni strains were susceptible to all macrolides used in this study.  相似文献   

7.
A drug susceptibility test of the combination drug TAZ/PIPC, which consists of a newly developed beta-lactamase inhibitor, tazobactam (TAZ), and one of penicillin antibiotics, piperacillin (PIPC), with combination ratio of 1:4 in potency, was conducted with stock strains and clinical isolates. The clinical efficacy and safety of its injection was also evaluated in children with a variety of infectious diseases. The results were as follows: 1. In susceptibility test, 114 strains from 4 species of stock strains were treated with 8 drugs, that is, TAZ/PIPC, PIPC, penicillin G (PCG), ampicillin (ABPC), cefotiam (CTM), cefotaxime (CTX), ceftazidime (CAZ), and sulbactam/cefoperazone (SBT/CPZ). Of three clinically isolated species from patients, Staphylococcus aureus (S. aureus) was treated with TAZ/PIPC, PIPC, methicillin (DMPPC), CTM, CTX, and SBT/CPZ, and the others were treated with the same drugs except for DMPPC. The MICs were measured for these bacterial strains inoculated at the concentration of 10(6) CFU/ml. The MIC90 values of TAZ/PIPC against 45 strains of Streptococcus pyogenes (S. pyogenes), one of the stock cultures of Gram-positive cocci, were 0.05 microgram/ml and similar to those of PIPC, CTM, CAZ, and SBT/CPZ. The MICs of TAZ/PIPC for 28 strains of Streptococcus agalactiae (S. agalactiae) were 0.39 microgram/ml and similar to those of PIPC, CTM, CAZ, and SBT/CPZ. As for Gram-negative bacilli, the MIC90 of TAZ/PIPC against 10 strains of Bordetella pertussis (B. pertussis) were 0.10 microgram/ml and similar to those of PIPC. The MIC90 of TAZ/PIPC against 31 strains of Haemophilus influenzae (H. influenzae) were 0.05 microgram/ml and similar to those of PIPC, CTX, and SBT/CPZ. Regarding Gram-positive cocci isolated from patients received this combination drug, the MIC90 of TAZ/PIPC against 2 strains of S. aureus, a non beta-lactamase producing strain and a low-beta-lactamase producing strain, were 0.78 microgram/ml and 3.1 micrograms/ml, respectively; the former value was similar to those of PIPC, DMPPC, CTM, and CTX, and the latter was similar to those of PIPC, DMPPC, CTX, and SBT/CPZ. Of 4 strains of Streptococcus pneumoniae, 2 strains were inhibited at 0.05 microgram/ml, and the others at 1.56 micrograms/ml; both values were similar to those of PIPC, SBT/CPZ. As for Gram-negative bacilli, 6 of 7 strains of H. influenzae did not produce beta-lactamase and 1 strain was a high producer. The MICs of TAZ/PIPC against beta-lactamase nonproducing strains were < or = 0.025 microgram/ml in 5 strains and 0.39 microgram/ml in 1 strain, and the values were similar to those of PIPC and SBT/CPZ. While the MIC of TAZ/PIPC against the high beta-lactamase producing strain was 0.78 microgram/ml; similar to that of SBT/CPZ and smaller than that of PIPC. 2. The results of clinical effects on 7 diseases in 33 cases were as follows: TAZ/PIPC was clinically judged "excellent" in 17 (51.5%); good in 14 (42.4%); fair in 2 (6.1%). No case with no response was seen in this study, and the total efficacy rate of "excellent" and "good" was 93.9%. 3. Bacteriological effects were evaluated in 17 strains of 4 species, and all of them were eradicated. 4. Adverse reactions were judged in 35, which consisted of 33 in which the clinical effects were evaluated and 2 dropped from this study. Of these cases, diarrhea was observed in 4 (11.4%). 5. Laboratory tests revealed an increase in platelets in 1 of 32 cases (3.1%), and eosinophilia in 2 of 29 cases (6.9%). Biochemical profile showed an increase in GPT alone and abnormal increases in both GOT and GPT in 1 each out of 21 cases.  相似文献   

8.
We studied the relationship between in vitro bacteriological parameters [minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and killing rate, defined as the reduction in the inoculum within 1, 3 or 6 hr] and in vivo activity of amoxicillin against 12 strains of Streptococcus pneumoniae, with penicillin MICs of < 0.01 to 16 micrograms/ml, in a cyclophosphamide-induced neutropenic murine pneumonia model. Dose-response curves were determined for amoxicillin against each strain, and three quantitative parameters of in vivo amoxicillin activity were defined, i.e., maximal attainable antimicrobial effect attributable to the drug [i.e., reduction in log colony-forming units (CFU) per lung, compared with untreated controls], dose required to reach 50% of maximal effect and dose required to achieve a reduction of 1 log CFU/lung. We demonstrated a highly significant correlation between the dose required to reach 50% of maximal effect and MIC (Spearman r = 0.98, P < .0001) or MBC (Spearman r = 0.95, P < .0001) for amoxicillin against strains of S. pneumoniae with a wide range of amoxicillin MICs (0.01-8 micrograms/ml). Significant correlations between the dose required to achieve a reduction of 1 log CFU/lung and MIC (Spearman r = 0.98, P < .0001) or MBC (Spearman r = 0.95, P < .0001) were also observed. In contrast, there were no significant correlations between the maximal attainable antimicrobial effect attributable to the drug and MIC, MBC or killing rate or between killing rate and the dose required to reach 50% of maximal effect or the dose required to achieve a reduction of 1 log CFU/lung. We conclude that in vitro susceptibility test results (MICs and MBCs) correlated well with in vivo amoxicillin activity against pneumococcal strains, including highly penicillin-resistant strains, in this animal model. Furthermore, these data suggest that the estimated MIC breakpoints for amoxicillin against S. pneumoniae would be 2 micrograms/ml for intermediate-resistant and 4 micrograms/ml for resistant, although this remains to be confirmed in clinical studies.  相似文献   

9.
RP 59,500 (Quinupristin-Dalfopristin) is the first semisynthetic injectable streptogramin antimicrobial agent, which is a combination of quinupristin and dalfopristin in a 30:70 ratio. The components of RP 59,500 act synergically to provide bactericidal activity through action at different sites on bacterial ribosomes. In the present study, the antimicrobial activity of RP 59,500 was compared with those of four macrolides (erythromycin, clarithromycin, azithromycin, roxithromycin). Susceptibility testing was carried out by microdilution method on 303 strains of 10 species, especially antibiotic-resistant Gram-positive cocci. RP 59,500 was active against a wide range of Gram-positive cocci including methicillin-resistant Staphylococci and penicillin-resistant Streptococcus pneumoniae. The MICs90 of RP 59,500 against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis were both 0.25 microgram/ml, although those of four macrolides were higher than 32 micrograms/ml. The MICs90 of RP 59,500 against penicillin-sensitive, -intermediate and -resistant S. pneumoniae were all 0.5 microgram/ml, although those of four macrolides against penicillin-resistant S. pneumoniae were higher than 32 micrograms/ml. RP 59,500 also exhibited equivalent activities to the four macrolides against strains of Streptococcus pyogenes. Streptococcus agalactiae and Moraxella catarrhalis. RP 59,500 exhibited the highest activities against Enterococcus faecalis, Enterococcus faecium and Enterococcus avium strains which are intrinsically resistant to most antimicrobial agents. No cross-resistance was observed between RP 59,500 and the four macrolides, which will merit attention in future clinical trials of the agent. The effect of human serum on the MIC of RP 59,500 was studied with strains of S. aureus, S. epidermidis and E. faecalis. The presence of 20% (V/V) serum had little or no effect on the MIC, although 50% (V/V) serum increased MICs by 4-8 folds. Laboratory-induced resistance to RP 59,500 occurred in a stepwise fashion in broth cultures of S. aureus, S. epidermidis and E. facalis strains and the induction rate was slow and no more than four fold increases were observed. Population analysis was performed on RP 59,500 and the reference macrolides against S. aureus ATCC 25,923 strain. Although low frequencies (less than 0.01%) of resistant sub-population were detected with EM, CAM, AZM and RXM, no RP 59,500-resistant sub-population was detected in this study.  相似文献   

10.
Penicillin-binding properties and characteristics of penicillin-binding proteins (PBPs) were investigated in several clinical isolates of Streptococcus pneumoniae differing in their susceptibilities to penicillin (minimal inhibitory concentration [MIC], 0.03 to 0.5 microgram/ml) and compared with the penicillin-susceptible strain R36A (MIC, 0.07 microgram/ml). Several changes accompanied the development of resistance: the relative affinity to penicillin of whole cells, isolated membranes, and two major PBPs after in vivo or in vitro labeling decreased (with increasing resistance). Furthermore, one additional PBP (2') appeared in four of five relatively resistant strains with an MIC of 0.25 microgram/ml and higher. PBP 3 maintained the same high affinity toward penicillin in all strains under all labeling conditions.  相似文献   

11.
The MICs of ofloxacin for 743 strains of Escherichia coli isolated from 1988 to 1994 were determined by testing. The strains were from patients with urinary tract infections complicated by functional or anatomical disorders of the urinary tract. Those determined to be ofloxacin resistant (MIC, > or =12.5 microg/ml) comprised 3 of 395 strains (1.3%) from the 1988 to 1990 group, 2 of 166 strains (1.2%) from the 1991 to 1992 group, and 7 of 182 strains (3.8%) from the 1993 to 1994 group. The incidence of resistant strains increased significantly during this period. The percentage of isolates with moderately decreased susceptibilities to ofloxacin (MIC, 0.39 to 3.13 microg/ml) also rose during the same period. To determine the incidence of gyrA mutations in urinary-tract-derived strains of E. coli, we developed a simple and rapid assay based on PCR amplification of the region of the gyrA gene containing the mutation sites followed by digestion of the PCR product with a restriction enzyme. Using this assay, we examined all 182 strains isolated in 1993 and 1994 for the presence of mutations at Ser-83 and Asp-87 in the gyrA gene. Of these strains, 33 (18.1%) had mutations in the gyrA gene. The incidences of mutations at Ser-83, at Asp-87, and at both codons were 10.4 (19 strains), 4.4 (8 strains), and 3.3% (6 strains), respectively. To determine the correlation of the mutations in the gyrA gene with susceptibilities to quinolones (nalidixic acid, ofloxacin, norfloxacin, and ciprofloxacin), we further examined 116 strains for which the MICs of ofloxacin were > or =0.2 microg/ml that were chosen from the isolates in the 1988 to 1992 group. The MICs of nalidixic acid for the strains without mutations at either Ser-83 or Asp-87 were < or =25 microg/ml, whereas those for the strains with single mutations or double mutations were from 50 to >800 microg/ml. For the fluoroquinolones, significant differences in the distributions of the MICs were observed among the strains without mutations, with single mutations, and with double mutations. The accumulation of mutations in the gyrA gene was associated with an increase in fluoroquinolone resistance. Ofloxacin MICs for the majority of the strains with single and double mutations were 0.39 to 3.13 and 6.25 to 100 microg/ml, respectively. This study demonstrates a chronological increase in the percentage of not only highly fluoroquinolone-resistant strains, corresponding to those with double mutations in the gyrA gene, but also strains with moderately decreased susceptibilities to fluoroquinolones, corresponding to those with single mutations. This increase in the incidence of strains with a single mutation in the gyrA gene portends a further increase in the incidence of strains with clinically significant resistance to fluoroquinolones.  相似文献   

12.
Sparfloxacin is a new antimicrobial that, while maintaining a good activity against gram negative bacilli, has a better in vitro activity against gram positive bacteria such as S pneumoniae, intracellular pathogens and anaerobic bacteria. The aim of this work was to study the in vitro activity of sparfloxacin against bacteria isolated from patients with community acquired respiratory infections between October 1994 and January 1995. Using the E-test technique, we studied the susceptibility to sparfloxacin, ciprofloxacin, ampicillin, amoxicillin/clavulanic acid, cefuroxime, cefotaxime, erythromycin, methicillin and nalidixic acid of 50 strains of S pneumoniae, 50 strains of H. influenzae, 50 strains of S aureus and 50 strains of S pyogenes. Sparfloxacin was active against 100% of S pneumoniae, H influenzae and S pyogenes strains. Twenty two percent of S aureus strains were resistant and the MIC 90 was 12 micrograms/ml. Sparfloxacin showed the best in vitro activity against H influenzae and S aureus, a similar activity with ampicillin and cefotaxime against S pneumoniae and a similar activity with ampicillin but superior to all other studied antimicrobial against S pyogenes. It is concluded that sparfloxacin is a good antimicrobial for bacteria isolated from patients with respiratory infections.  相似文献   

13.
In Pseudomonas aeruginosa, resistance to imipenem is mainly related to a lack of protein OprD and resistance to fluoroquinolones is mainly related to alterations in DNA gyrase. However, strains cross resistant to fluoroquinolones and imipenem have been selected in vitro and in vivo with fluoroquinolones. We investigated the mechanisms of resistance to fluoroquinolones in 30 clinical strains of P. aeruginosa resistant to ciprofloxacin (mean MIC, >8 micrograms/ml), 20 of which were also resistant to imipenem (mean MIC, >16 micrograms/ml). By immunoblotting, OprD levels were markedly decreased in all of the imipenem-resistant strains. Plasmids carrying the wild-type gyrA gene (pPAW207) or gyrB gene (pPBW801) of Escherichia coli were introduced into each strain by transformation. MICs of imipenem did not change after transformation, whereas those of ciprofloxacin and sparfloxacin dramatically decreased (25- to 70-fold) for all of the strains. For 28 of them (8 susceptible and 20 resistant to imipenem), complementation was obtained with pPAW207 but not with pPBW801. After complementation, the geometric mean MICs of ciprofloxacin and sparfloxacin (MICs of 0.3 microgram/ml and 0.5 microgram/ml, respectively) were as low as those for wild-type strains. Complementation was obtained only with pPBW801 for one strain and with pPAW207 and pPBW801 for one strain highly resistant to fluoroquinolones. These results demonstrate that in clinical practice, gyrA mutations are the major mechanism of resistance to fluoroquinolones even in the strains of P. aeruginosa resistant to imipenem and lacking OprD, concomitant resistance to these drugs being the result of the addition of at least two independent mechanisms.  相似文献   

14.
We analyzed 88 strains of Streptococcus pneumoniae (S. pneumoniae) isolated in Showa University Hospital from June 1995 to July 1996. The ratios of antibiotic resistance were 39% to penicillin G, 50% to erythromycin, and 2% to imipenem. No resistant to cefotaxime and ofloxacin was observed. Thirty-four strains (39%) were considered to be penicillin-resistant S. pneumoniae (PRSP) strains (MIC of penicillin G > or = 0.5 microgram/ml), according to the breakpoint determined by the Japanese Working Group for Penicillin-Resistant Streptococcus pneumoniae. The ratio of PRSP was higher in S. pneumoniae isolated from inpatients (25/47) when compared to that from outpatients. By PCR analysis, DNA regions of autolysin were amplified in all the 88 strains, confirming that the isolates were S. pneumoniae. Penicillin-binding protein 2B (PBP2B) class B region was positive in 32 strains, and PBP2B class A was in 2 strains. Twenty eight of 34 strains of PRSP contained the PBP2B class B gene. In the remaining six PRSP strains, neither the PBP2B class A nor B region was amplified. The PBP2B class B region was detected as a 180-kb fragment of SmaI digestion of S. pneumoniae DNA by Southern blot analysis, confirming that the detection of PBP2B class B gene by PCR is reliable. We concluded that the PBP2B class B gene is considered to be a major gene responsible for phenotypic resistance of PRSP. We performed genotyping by SmaI digestion pattern using pulsed field gel electrophoresis. No identical pattern was observed in isolates from inpatients, suggesting that apparent nosocomial infection of S. pneumoniae was negligible.  相似文献   

15.
A total of 1,116 clinically isolated strains belonging to Staphylococcus aureus (200), Staphylococcus epidermidis (200), Streptococcus pneumoniae (20), Escherchia coli (200), Klebsiella spp. (177), Serratia marcescens (22), Pseudomonas aeruginosa (224), Haemophilus influenzae (35) and Salmonella (38) from the Department of Infectious Diseases, La Sapienza University in Rome (Italy) were tested against three fluoroquinolones (ofloxacin, ciprofloxacin and levofloxacin) and 10 other antibiotics (augmentin, ampicillin, cefaclor, cefixime, cefotaxime, cotrimoxazole, gentamicin, minocycline, oxacillin and vancomycin). Fluoroquinolones inhibited essentially about 100% of H. influenzae, Salmonella and S. pneumoniae, more than 75% of Staphylococcus including methicillin-resistant strains, and about 90% of Enterobacteriaceae and 50% of P. aeruginosa. Minimal inhibitory concentration values ranged from < 0.015 to > 32 micrograms/ml for Klebsiella, S. aureus and epidermidis, E. coli and P. aeruginosa; from < 0.015 to 2 micrograms/ml for Salmonella; from 0.03 to 16 micrograms/ml for Serratia; from < 0.015 to 1 microgram/ml for Haemophilus; and from 0.5 to 2 micrograms/ml for S. pneumoniae. Levofloxacin and to a lesser extent ofloxacin and ciprofloxacin, generally exhibited a greater activity than the other agents against both Gram-positive and Gram-negative bacteria. Regarding the distribution of resistant strains in Italy, we found a peculiar pattern of resistance as far as E. coli and P. aeruginosa were concerned. Quality control parameters are also summarized. S. epidermidis resulted as a new emergent pathogen especially in immunocompromised patients and its level of sensitivity has been modified over the last few years. In fact, the percentage of resistant strains to antibiotics or the percentage of methicillin-resistant isolates (in our study 35%), has gradually increased. Levofloxacin and ofloxacin showed good activity against staphylococcal strains compared with the majority of other antibiotics. These results suggest that the newer quinolones are promising antimicrobial agents for various infections.  相似文献   

16.
We determined the minimum inhibitory concentration (MIC) of DR-3355, a newly developed quinolone-derivative antibacterial agent, against clinical isolates of various bacterial species from enteritis patients, and compared them with those of ofloxacin (OFLX), ciprofloxacin (CPFX), nalidixic acid (NA), ampicillin (ABPC), kanamycin (KM). MIC90 of DR-3355 against 94 strains of Shigella spp. and 5 strains of Escherichia coli, 36 strains of Salmonella spp., 22 strains of Vibrio cholerae, 5 strains of Vibrio parahaemolyticus, and 19 strains of Campylobacter jejuni were 0.05, 0.10, 0.0025, 0.39, and 0.78 micrograms/ml, respectively. These values were 1/2 of that of OFLX, and two times of that of CPFX. MIC90 of DR-3355, OFLX and CPFX against C. jejuni were 0.78 micrograms/ml. MIC90 of DR-3355 against isolates from enteritis patients except for Vibrio spp., were 1/30 to 1/60 of those of NA, ABPC, and KM.  相似文献   

17.
Azithromycin (AZM), a new oral macrolide antibiotic, in 10% fine granules or 100 mg capsules was given to pediatric patients to treat various infections. The following results were obtained in our studies of AZM for its antibacterial activities against clinical isolates, its pharmacokinetics, its efficacy, and its safety. 1. MICs of AZM, erythromycin (EM) and clarithromycin (CAM) were determined against a total of 57 strains all at 10(6) cfu/ml. Among Gram-positive cocci, MICs of AZM ranged from 0.78 to > 100 micrograms/ml against Staphylococcus aureus (20 strains), from 0.05 to 0.1 microgram/ml against Streptococcus pyogenes (11 strains), and from 0.0125 to 3.13 micrograms/ml against Streptococcus pneumoniae (10 strains). These MICs were similar to those of the other macrolides. Among Gram-negative bacilli, MICs of AZM were 0.05 micrograms/ml against Moraxella subgenus Branhamella catarrhalis (1 strain), from 0.78 to 3.13 micrograms/ml against Haemophilus influenzae (9 strains), 0.78 micrograms/ml against Haemophilus parainfluenzae (1 strain) and 6.25 micrograms/ml against salmonella sp. (1 strain). These values were similar to or lower than those of the other macrolides. Against Mycoplasma pneumoniae, MICs of AZM were < or = 0.0008 micrograms/ml in three strains. One strain of M. pneumoniae showed tolerance to AZM at MIC 25 micrograms/ml. The other agents exhibited higher MIC than AZM against this organism. 2. Plasma samples were collected from five patients receiving fine granules and four patients receiving capsules for drug level determination. The patients received AZM at 10.0 approximately 16.3 mg/kg body weight once daily for 3 days. Drug concentrations in plasma at two hours after Day 3 dosing were in a range between 0.02 and 0.19 micrograms/ml for fine granules and were in a range between 0.11 and 0.42 micrograms/ml for capsules. 3. Urine samples were collected from four patients receiving fine granules and four patients receiving capsules. Drug levels were determined to be 3 micrograms/ml at post-treatment 48 hours for fine granules and post-treatment 72 hours for capsules. Urinary excretion rates of AZM in three patients on capsules lied in a range between 4.69 and 10.17%. 4. Effectiveness of AZM in fine granules was evaluated in 128 patients having a total of 19 different infections. AZM was rated "excellent" in 51 patients, "good" in 63, "fair" in 8, "poor" in 6, resulting in an efficacy rate of 89.1%. Effectiveness of AZM in capsular form was evaluated in 23 patients with five different infections. AZM was found "excellent" in 13 patients and "good" in 10, resulting in an efficacy rate of 100%. 5. AZM in fine granules eradicated 45 strains of 54 in 8 different bacteria. AZM in capsules eradicated 9 strains of 10 strains in 6 different bacteria. 6. As for adverse reactions, one patient complained of eruption, one vomiting, one loose stool, five diarrhea, when administered with fine granular form of AZM. One patient on AZM capsules experienced urticaria and vomiting. 7. As for abnormal laboratory changes, three patients were found with decreased WBC, seven with increased eosinophil, two with increased GOT and GPT, one with increased GPT. They were all on fine granular form of AZM. As far as abnormalities found in patients administered with AZM in capsular form, two showed decreased WBC, one decreased WBC along with increased eosinophil, and three increased eosinophil.  相似文献   

18.
Cefditoren (formerly ME-1206), a new orally administered cephalosporin, was evaluated in vitro against 1249 recently isolated strains of Streptococcus pneumoniae (500 strains), Moraxella catarrhalis (250 strains), and Haemophilus influenzae (499 strains). Reference National Committee for Clinical Laboratory Standards methods were used and the strains were representative for the current rates of beta-lactamase production or penicillin resistance. Cefditoren had MIC50/MIC90 results for Moraxella catarrhalis and Haemophilus influenzae of 0.12/0.5 and < or = 0.008/0.015 microgram/mL, respectively. The pneumococci were consistently twofold to eightfold more susceptible to cefditoren than other oral cephalosporins or penicillins. The MIC90 for penicillin-resistant S. pneumoniae was only 2 micrograms cefditoren/mL, and the highest recorded MIC was 4 micrograms/mL. Cefditoren appears to be a very promising beta-lactam possessing the greatest potency and potential spectrum versus contemporary (1997) respiratory tract pathogens.  相似文献   

19.
Quinolone-resistant Escherichia coli strains were isolated from poultry clinical samples in Saudi Arabia. The poultry flocks had been treated with oxolinic acid or flumequine prophylaxis. The measure of the uptake of fluoroquinolones showed that none of the strains had a reduced accumulation of quinolones. The result of complementation with the wild-type E. coli gyrA gene, which restored fluoroquinolone susceptibility, and the isolation of DNA gyrase from six isolates indicated that the resistant strains had an altered DNA gyrase. The minimum effective dose of ciprofloxacin for inhibition of supercoiling catalyzed by the isolated gyrases varied from 0.085 microgram/ml for a susceptible isolate (MIC < 4 micrograms/ml) up to 96 micrograms/ml for the more resistant one (strain 215, MIC > 64 micrograms/ml). For the same two isolates, the minimum effective doses of sparfloxacin varied from 0.17 up to 380 micrograms/ml. The in vitro selection of spontaneous single-step fluoroquinolone-resistant mutants using ciprofloxacin suggested that the more resistant mutants are likely the result of several mutations. These results also show that, as in human medicine, cross-resistance between older quinolones and fluoroquinolones can exist in veterinary isolates and reiterate the need for the prudent use of these drugs.  相似文献   

20.
The in vitro activity of RP59500, a streptogramin antibiotic, against 146 clinical isolates of vancomycin-resistant gram-positive bacteria was examined. Five strains of the species Enterococcus casseliflavus and Enterococcus gallinarum, for which the MIC of vancomycin was 8 micrograms/ml, were also studied. Twenty-eight vancomycin-susceptible strains of Enterococcus faecalis and Enterococcus faecium were included for comparison. The drug was highly active against Leuconostoc spp., Lactobacillus spp., and Pediococcus spp. (MICs, < or = 2 micrograms/ml). RP59500 was more active against vancomycin-susceptible strains of E. faecium than E. faecalis (MICs for 90% of the strains [MIC90s], 1.0 versus 32 micrograms/ml). Vancomycin-resistant strains of E. faecalis were as resistant to RP59500 as vancomycin-susceptible strains (MIC90, 32 micrograms/ml), but some vancomycin-resistant E. faecium strains were relatively more resistant to the new agent (MIC90, 16; MIC range, 0.5 to 32 micrograms/ml) than were vancomycin-susceptible organisms of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号