首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new pretreatment method has been developed to improve the catalytic activity of the Ni-Fe-Mo-Co alloy elec- trode for hydrogen evolution reaction (HER). The procedure involves pre-electrolyzing the Ni-Fe-Mo-Co alloy electrode in 30% KOH solution containing 10% potassium sodium tartrate at 70°C for 2 h, until some of the Mo and Fe elements are leached out. The surface morphology of the Ni-Fe-Mo-Co alloy demonstrates a unique hive-like structure after the pre- treatment, which has the pore size in a nanometer range (about 50 nm), a very large real surface area, and good stability. The results of the electrochemical studies show that compared to other similar electrode materials and the treated Ni-Fe-Mo-Co electrode by leaching method, the pre-treated Ni-Fe-Mo-Co electrode has a much lower overpotential and much higher exchange current density for HER. In addition, a long-term continuous electrolysis test with a current interrup- tion shows that the Ni-Fe-Mo-Co alloy has excellent catalytic stability.  相似文献   

2.
本文以聚氨酯泡沫海绵为基体,经导电层的制备、电镀和热解还原工艺制备出了泡沫Ni-Mo-Co三元合金.采用扫描电子显微镜(SEM)和X射线衍射技术(XRD)分别研究了化学镀镍后及电镀Ni-Mo-Co合金的表面形貌、元素组成和晶态结构,并用稳态极化曲线研究了泡沫Ni-Mo-Co合金电极在30%KOH溶液中的析氢催化性能.结...  相似文献   

3.
Amorphous Ni-B/TiO2 electrodes were successfully prepared by electroless plating. Highly ordered TiO2 nanotube arrays fabricated by anodic oxidation were employed as substrate and loaded with Ni-B alloy by electroless plating. The phase formation, microstructures and catalytic activity of electrodes were investigated by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and electrochemistry analyzer, respectively. The results show that Ni-B/TiO2 electrodes with an average particle size of 200 nm present a typical amorphous structure of Ni and B, and have high catalytic activity for methanol electrooxidation in alkaline medium. The peak current density in cyclic voltammetry (CV) curves reaches 360 mA cm−2 in the solution with 0.5 mol L−1 methanol, much higher than that of Ni-B/Ti electrode. With the methanol concentration increasing to 1.5 mol L−1, the peak current density increases to 488 mA cm−2, after which it remains almost constant. The Ni-B/TiO2 electrodes are relatively stable according to catalytic lifetime test; the peak current density remains 72.1% of the original value after 1300 times cycles. The amorphous Ni-B/TiO2 electrode should be a promising candidate for direct methanol fuel cell.  相似文献   

4.
制备高效稳定的非贵金属催化剂对于电解水生产高纯度氢气的发展至关重要。本实验通过简单的阳极氧化法和电沉积方法制备NiMo/TNAs复合催化剂,将NiMo合金颗粒通过电沉积方法稳固包覆于TNAs独特的弯曲有序界面上,当沉积电流和电解液Mo离子浓度变化时,NiMo的沉积状态和催化能力也随之改变,经过研究表明,在沉积电流密度15mA.cm-2,Mo离子浓度4g.L-1条件下沉积1min制备的样品具有更高的HER催化性能。通过更大活性表面积,更便捷的离子传输通道和增强的结构稳定性,获得了优异的催化活性的NiMo/TNAs电催化剂。NiMo/TNAs催化剂的起始过电位仅为50mV,分别在110mV和227mV低过电势下获得10mA.cm-2和100mA.cm-2的电流密度。因此得到结论,将NiMo合金颗粒沉积在TNAs纳米阵列,制备NiMo/TNAs催化剂为制备廉价高效电催化剂提供了新途径。  相似文献   

5.
The effect of the electrolyte composition and the stationary electrolysis parameters on the composition and morphology of Fe–Mo and Fe–Co–Mo coatings deposited from complex citrate electrolytes based on Fe(III) is studied. It is shown that, at a constant component ratio of с(Fe3+): с(Co2+): с(MoO2? 4): с(Cit3–) = 2: 2: 1: 4, an increase in the electrolyte concentration leads to a decrease in the pH of the solution in a range of 4.85–4.30 and in the molybdenum content in the coating. An increase in the current density contributes to the molybdenum enrichment of the electrodeposited alloy in the entire range of electrolyte concentrations. The Fe–Mo alloy coatings have a rough microporous surface; an increase in the current density does not lead to significant changes in the surface topography. It is found that the formation of ternary coatings is characterized by the competitive reduction of iron and cobalt in the alloy; the molybdenum content depends on the current density. At a metal ratio of 3: 2: 1 and a molybdenum content of up to 17 at % in the Fe–Co–Mo alloy, the surface has a fine-grained needlelike structure typical of cobalt. With an increase in i c, the atomic fraction of molybdenum increases, while the surface becomes microglobular. The Fe–Co–Mo electrodeposits with a metal ratio of 2.5: 1.5: 1.0 and a molybdenum content of 19–20 at % have a more developed surface with a high density of spheroids.  相似文献   

6.
7.
通过在1173 K的CaCl2中对金属氧化物和石墨进行电脱氧,制备了具有面心立方结构的纳米级(VNbTaZrHf)C高熵碳化物(HEC)粉末。适当的温度条件有利于抑制HEC颗粒的原位烧结生长。在1 mol/L KOH溶液中进行了电化学性能测试,探索(VNbTaZrHf)C HEC的催化性能。通过极化曲线、Tafel斜率、电化学阻抗谱和双层电容值CV测试评估了(VNbTaZrHf)C HEC的催化析氢反应(HER)性能。结果表明,(VNbTaZrHf)C HEC的双层电容值为40.6 mF/cm2。双层电容值越大,表明电化学活性表面积越大。由于(VNbTaZrHf)C HEC的高熵效应和纳米级结构,它表现出优异的催化HER性能,并为通过熔盐电脱氧制备HECs提供了新方法。  相似文献   

8.
To elucidate the effects of Fe on the Ti–V-based hydrogen storage electrode alloys, the Ti0.8Zr0.2V2.7−xMn0.5Cr0.8Ni1.0Fex (x = 0.0–0.5) alloys were prepared and their structures and electrochemical properties were systematically investigated. XRD results show that all the alloys consist of a C14 Laves phase with hexagonal structure and a V-based solid solution phase with bcc structure. With increasing Fe content, the abundance of the C14 Laves phase gradually decreases from 43.4 wt% (x = 0.0) to 28.5 wt% (x = 0.5), on the contrary, that of the V-based solid solution phase monotonously increases from 56.6 wt% to 71.5 wt%. In addition, SEM observation finds that the grain size of the V-based solid solution phase is first gradually reduced and then enlarged with increasing x. Electrochemical investigations indicate that the substitution of Fe for V markedly improves the cycling stability and the high rate dischargeability of the alloy electrodes, but decreases the maximum discharge capacity and the activation performance. Further electrochemical impedance spectra, the linear polarization curve and the potentiostatic step discharge measurements reveal that the electrochemical kinetics of the alloy electrodes should be jointly controlled by the charge-transfer reaction rate on the alloy surface and the hydrogen diffusion rate in the bulk of the alloys. For the alloy electrodes with the lower Fe content (x = 0.0–0.2), the hydrogen diffusion in the bulk of the alloys should be the rate-determining step of its discharge process, and while x increases from 0.3 to 0.5, the charge-transfer reaction on the alloy surface becomes to the rate-determining step, which induces that the electrochemical kinetics of the alloy electrodes is firstly improved and then decreased with increasing Fe content.  相似文献   

9.
Electrocatalytically active Cu-Ni alloy coatings have been developed from a simple electrolyte having only Cu+2 and Ni+2 ions, without the use of any additive. Electrocatalytic character of the coatings was tested for their hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1.0 M KOH medium, alongside with their corrosion behaviours. Cyclic voltammetry and chronopotentio-metry study revealed that the deposition current density has a prominent role on the alkaline water splitting behaviour of the coatings, depending on their phase structure, composition and surface morphology. It was found that the c.d. has an inverse dependence on HER and OER. The Cu-Ni alloy coatings developed, respectively at 3.0 and 4.0 A dm–2, were found to be the best coatings for HER and OER, depending on the surface morphology. The electrocatalytic activity of Cu-Ni alloy coating for HER, deposited at 3.0 A dm–2 (optimal), was further improved through electrochemical dissolution of the as-deposited coating. The increase in the electrocatalytic activity for HER has been attributed to the enhancement in the exposed surface area of Ni active sites due to the leaching of Cu from the alloy matrices, evidenced by the energy-dispersive X-ray spectroscopy and scanning electron microscopy. The dependencies of HER and OER on to the surface of Cu-Ni alloy coatings were analysed in terms of deposition c.d. of the coatings, and the results are discussed.  相似文献   

10.
王华  叶炜 《表面技术》2011,40(6):74-77
采用电沉积方法制备Ni-S-Co合金电极,通过正交实验和极化曲线测试研究了CoSO4·7H2O浓度、电流密度、电镀液温度、电沉积时间和电解液温度对Ni-S-Co电极析氢性能的影响.采用SEM,XRD和EDXA对镀层的形貌、结构和组成进行观察和分析.实验结果表明:制备具有最佳析氢活性的Ni-S-Co电极的工艺条件是25 ...  相似文献   

11.
Raney nickel and its alloys with the transition metals were prepared and investigated as gas diffusion electrodes for the hydrogen oxidation reaction (HOR) in 6 M KOH and at 60 °C. The spongy Raney nickel prepared by a mixture of Ni and Al with a weight ratio of 1:1 was compared for the catalytic activity as hydrogen electrodes with other alloy formations containing 2 wt.% of Cu, Fe, Cr, Ti and La. Depending on the composition of the active layer, the electrocatalytic activity of the Raney nickel was found to decrease in a descending order of the doped metals: Cr>La>Ti>Cu>Fe and with no admixture. The catalytic response of the electrodes, especially for the Cr and Ti-based Raney Ni showed high enrichment and aggregation on the surface and hence affects the activity and stability. Surface area, particle size, average pore diameter, particle morphology and surface elements of the various alloy combinations, have been analyzed and assessed using BET-specific surface areas, SEM and EDXS.  相似文献   

12.
Composite Ni + Ti, Ni + V and Ni + Mo coatings were prepared by codeposition of Ti, V or Mo particles in an Ni matrix on a carbon steel substrate from the nickel bath in which metallic powder was held in suspension. The influence of the metal powder amount in the bath, as well as the deposition current density on chemical composition of obtained coatings has been investigated. It was stated that the content of incorporated Ti, V and Mo increases with the increase in the particle concentration in the electrolyte, and diminishes with the increase in the deposition current density. The mechanism of metallic particles embedding was explained on the base of Ni2+ ions adsorption process. Deposits exhibited a presence of Ti, V or Mo microsize particles embedded into the nanocrystalline nickel matrix. Incorporation of metallic powder into electrolytic nickel matrix results in the significant increase in the real surface area of the deposits. Electrodeposited composite coatings were tested as electrode materials for hydrogen evolution reaction (HER) in an alkaline environment. Electrochemical characterization was carried out by steady-state polarization method. All composite materials showed enhanced electrochemical activity for HER compared to the nickel electrode. Based on determined values of exchange current density-j0 and the values of hydrogen evolution overpotential at 100 mA cm− 2-η100 the variation in the electrochemical activity of Ni + Ti, Ni + V and Ni + Mo composites in dependence on their chemical composition and the kind of incorporated component was evaluated. Comparison of the investigated materials leads to the statement that the highest activity towards the HER exhibit Ni + Mo deposits.  相似文献   

13.
The role of sulphur in the dissolution and the passivation of a Ni-25Fe alloy was investigated. The concentrations of sulphur on the surface were quantitatively measured by the radiotracer technique35S. The influence of the surface structure was accounted by using single crystal electrodes of well defined crystallographic orientation. Sulphur was pre-adsorbed in H2S-H2 under pressure and temperature conditions leading to the formation of a complete monolayer of adsorbed sulphur. The presence of the monolayer of adsorbed sulphur enhances the dissolution rate and delays the passivation of the alloy. The passivation can take place only when the sulphur coverage is lowered by partial desorption. When sulphur is in solid solution in the alloy, with a content of 0.008 at. % the passivation is totally precluded. This effect is due to sulphur enrichment on the surface by selective dissolution of the metal elements. The sulphur concentration on the surface increases with the potential. A stationary state is finally obtained, with a sulphur coverage of 8–10 layers. This thin sulphide film has no protective effect, in contrast with the oxide film formed on the sulphur-free alloy.  相似文献   

14.
The effect of surface treatment of Zr0.9Ti0.1Ni1.1Co0.1Mn0.6V0.2 alloy electrodes with a boiling 6 M KOH solution for different periods of time was discussed quantitatively by comparison of exchange current density measured by micropolarization method and charge-transfer resistance measured by ac impedance method. The initial activation, exchange current density and charge transfer resistance were greatly improved by increasing alkali treatment time. In particular, the alkali treatment for 2 h showed sufficient electrocatalytic activity and activation effect. The alkali treatment was effective for the progress of the pulverization as well as the removal of the surface Zr-oxide layer. Additionally, the increase in the Ni component on the alloy surface as a result of the alkali treatment was responsible for the above improvement.  相似文献   

15.
Abstract

Ruthenium oxide, one of the excellent electrocatalysts having high conductivity and high chemical and thermodynamic stability, has been coated onto the surface of an electrode made from a Al–5 wt-%Zn alloy. The activated aluminium ion was able to diffuse through the porous catalytic hydrophilic layer. Ruthenium oxide coated Al–Zn alloy anodes displayed high open circuit potential and high closed circuit potential during galvanic exposure with mild steel cathodes. A galvanic efficiency as high as 86% with an actual current capacity of 2573 A h kg-1 was achieved. The RuO2 film underwent very little deterioration and a considerable mass of the ruthenium oxide film persisted on the anode surface, even after the electrode size had been reduced to one third of its original size owing to galvanic dissolution. These electrodes are economically efficient, as convenient to prepare, install and use as other conventional electrodes, are tolerable of very aggressive media and highly efficient, even under high galvanic current loads.  相似文献   

16.
The phase structures and electrochemical properties of the V3TiNi0.56Hf0.24Cox alloys have been studied. It is found that the addition of Co into the V3TiNi0.56Hf0.24 alloy decreases the amount of the main phase and increases the amount of the secondary phase. The main phase is a V-based solid solution with b.c.c. structure and the secondary phase is an under-stoichiometric C14-type Laves phase of (Ti, Hf)(V, Co, Ni)m (m<2) with hexagonal structure. With increasing Co content, the lattice parameters of both the main phase and the secondary phase decrease. This leads to a decreasing stability of the alloy hydride and deterioration in discharge capacity of the alloy electrode. However, increasing Co content improves the durability of the electrodes in KOH solution. In addition, because of the poor reaction kinetics of the Laves phase due to inadequate Ni content, the V3TiNi0.56Hf0.24Cox alloys show poorer high rate capabilities.  相似文献   

17.
《Intermetallics》2000,8(8):891-901
TiAl–2 at. % X (X=V, Fe, Co, Cu, Nb, Mo, Ag and W) alloys were sulfidized at 1173 K for 86.4 ks at a 1.3 Pa sulfur pressure in an H2–H2S gas mixture. The structure, phases, and compositions of the external sulfide scale and alloy surface layer were measured using EPMA and X-RD. The TiAl–2Ag and –2Cu alloys sulfidized faster than TiAl, and the alloy surface layer was thicker than that of TiAl. Sulfidation amounts of the TiAl–2X (X=V, Co, Fe, Mo, W and Nb) alloys were almost the same as that of TiAl, while the thickness of the alloy surface layer decreased in the order: V>Co>Fe>Mo>[Cr (by Narita T, Izumu T, Yatagai M, Yoshioka T. Intermetallics, 2000;8:371)]>W>Nb. The sulfide scale was composed of multi-layer structures: an outermost (rich in Ti-sulfides), an outer (rich in Al2S3), an inner (a mixture of Ti-sulfides and Al2S3), and an innermost (rich in Ti-sulfides) layer. The alloy surface layer also had a multi-layer structure, and was classified into four groups: group 1 for TiAl–2V and –2Co alloys as well as TiAl binary alloy where the surface layer consists of alloy substrate/TiAl2/TiAl3/sulfide scale, group 2 for TiAl–2Nb, –2Mo, and –2W (and also– 2Cr) alloys with alloy substrate/TiAl2/TiAl3/(Nb, Mo, W or Cr)–Al alloy/sulfide scale, group 3 for TiAl–2Cu and –2Ag alloys with alloy substrate/TiAl2/Ti (Al, Ag or Cu)3 with an L12 structure/TiAl3/sulfide scale, and group 4 for TiAl–2Fe alloy with alloy substrate/TiAl2/Ti(Al,Fe)3 with an L12 structure/TiAl3/FeAl3/sulfide scale. Diffusion paths for these four groups were shown in a tentative Ti–Al–X ternary phase diagram.  相似文献   

18.
Amorphous Ni-S-Co alloy was prepared by means of chemical electro-deposition method on the foam nickel matrix. The surface morphology and microstructure of Ni-S-Co coatings were studied usmg SEM and XRD, and the electrochemical properties were tested by electrochemical methods. The results show that the coating has amorphous structure and the particles of the surface are fine with large specific surface area. The Ni-S-Co alloy is more active with lower potential for hydrogen evolution, higher exchange current density and lower activation energy compared with Ni and Ni-S electrode. Its hydrogen evolution reaction(HER) is enhanced, the size of particles of surface decreases and the surface area increases after being activated by KOH alkaline solution.  相似文献   

19.
通过溶剂热法和滴钌法(室温)将钒和钌引入到NiS2中,并制备了包覆在泡沫镍上的V,Ru共掺杂NiS2微球(V, Ru)-NiS2/NF电催化剂。通过硫化过程产生粗糙的高尔夫球状结构暴露出丰富的活性位点,此外,钒和钌的协同作用可以优化NiS2的电子结构,提供额外的催化活性位点,进一步增强本征催化活性。泡沫镍的加入对催化材料起到支撑作用,避免聚集,同时提高导电性。结果表明,(V, Ru)-NiS2/NF电催化剂在碱性条件下表现出优异的电催化性能和优异的析氢反应稳定性。在10 mA·cm-2的电流密度下,(V, Ru)-NiS2/NF提供了38 mV的过电位,小于商业Pt/C的过电位,并且具有较低的Tafel斜率(80.3 mV·dec-1)、较高的电化学活性表面(ECSA)和在KOH溶液中24 h出色的稳定性。  相似文献   

20.
MgTi x Ni (x = 0, 0.1, and 0.2) alloys were successfully prepared by mechanical alloying (MA), and the influence of milling time on the electrochemical characteristics of the electrodes was discussed. MgTi x Ni alloys after 90 h milling displayed the best electrochemical performance. The X-ray diffraction patterns showed that the alloy ball-milled for 90 h was amorphous with a widened diffraction peak. The charge-discharge tests indicated that these alloys had good electrochemical activation properties, and the MgTi0.2Ni alloy electrode exhibited the best cycle performance. The initial discharge capacity of the MgTi0.2Ni alloy reached up to 401.1 mAh·g−1, and the retention rate of capacity was 31.0% after 30 cycles, much higher than that of MgNi (17.3%). The Tafel polarization curves revealed that Ti addition could enhance the anticorrosion performance of these alloys in alkali solution, which was responsible for the ameliorated cyclic stability of these alloy electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号