首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
超硬磨料砂轮的激光修锐技术研究   总被引:26,自引:4,他引:22  
激光修整超硬磨料砂轮的原理,利用Nd:YAG固体脉冲激光器进行激光修锐青铜结合剂和树脂结合剂硬磨料砂轮的试验,用扫描电镜观察了激光修锐前后砂轮表面的微观表貌,对激光作用下砂轮表面不同结合剂材料的去除机理进行了分析,通过磨削陶瓷试验,研究激光修锐的金刚石砂轮的磨削性能,并与普通砂轮磨削肖修锐的金刚石砂轮进行对比。结果表明,采用试验所确定的激光参数可选择性地去除砂轮表面的结合剂材料,而不损伤超硬磨粒,  相似文献   

2.
声光调Q YAG脉冲激光修锐和整形青铜金刚石砂轮   总被引:2,自引:0,他引:2  
采用声光调Q钇铝石榴石(Yttriumaluminumgarnet,YAG)脉冲激光径向辐照,修锐和整形青铜金刚石砂轮。通过建立传热学数学模型和数值计算以及激光单脉冲烧蚀试验,分析了修锐和整形机理,找到了合理的修锐和整形的激光参数与工艺参数。设计和研发了一套在线检测闭环控制激光烧蚀系统,利用该系统控制激光烧蚀过程,进行了青铜金刚石砂轮修整,得到了较高的整形精度和良好的地形地貌,并且实现了一道工序同时整形与修锐。通过磨削对比试验分析了修整效果。  相似文献   

3.
针对声光调QYAG脉冲激光修整树脂CBN砂轮,建立了单脉冲激光烧蚀过程的数学模型。应用有限元方法模拟出各种激光功率密度条件下的温度场和凹坑形貌,获得单脉冲烧蚀凹坑深度与激光功率密度的关系曲线,并与试验结果进行比较,表明所建立的模型可以正确描述实际物理过程。  相似文献   

4.
研究了砂轮修整方法对陶瓷结合剂CBN砂轮摩削效果的影响。研究结果表明,用单粒金刚石修整陶瓷结合剂CBN砂轮时,修整后的砂轮表面层磨粒钝化,磨削力大,磨削质量差。用碳化硅砂轮或磨削油石法修整的陶瓷结合剂CBN砂轮则可避免初期磨削力大的问题。  相似文献   

5.
激光修整圆柱形CBN砂轮中偏焦量对能量分布的影响   总被引:1,自引:0,他引:1  
激光束偏焦量是修整圆柱形砂轮的重要参数,它影响光斑形状及其能量密度,因而影响激光修整砂轮的质量。介绍了用数控Nd:YAG激光系统修整圆柱形CBN砂轮过程中,偏焦量对光斑作用能量分布的影响与其修整作用的基本原理,建立了激光偏焦量作用于圆柱形砂轮上任意一点的光斑面积数学模型;给出了调整激光偏焦量修整圆柱形砂轮的关系与参数范围;采用计算与试验结合的方法,得到激光偏焦量、输入能量密度及激光修整参数的对应关系。研究结果为进一步提高激光修整圆柱形陶瓷结合剂CBN砂轮的质量提供了理论与试验依据。  相似文献   

6.
研究了树脂结合剂金刚石砂轮修整过程中修整力与修整效果的关系,基于修整力的变化表征了砂轮的表面形貌及磨削性能。首先,对碳化硼、碳化硅、白刚玉3种砂轮修整工具进行实验,并采集了修整过程中修整力的变化;然后,利用白光干涉仪观测修整后砂轮的表面形貌;最后,对修整后砂轮进行磨削验证实验,得到不同修整工具修整后砂轮的磨削性能。基于上述实验,分析并验证了修整力的变化与砂轮表面形貌和砂轮磨削性能的关系。结果表明,法向力Fn能够表征砂轮的磨粒切削刃密度以及磨粒突出高度;修整比率β反映了砂轮的锋锐程度,当β稳定时,砂轮达到充分修整。因此修整力反映了砂轮表面形貌和磨削性能,根据修整力的变化可以把握砂轮的修整进程。  相似文献   

7.
CBN砂轮以其优异的性能在高效、高精度磨削中具有广阔的应用前景。文中以树脂结合剂CBN砂轮轴承圈内圆磨削为研究对象,采用金刚石滚轮修整器,研究选择合适的修整及磨削参数,使CBN砂轮的性能在轴承磨削中得到充分发挥。通过对修整前后砂轮表面形貌分析,揭示了修整参数对修锐效果的影响,并结合磨削后试件表面的精度获得了合适磨削参数,试验结果对CBN砂轮在轴承圈的大批量磨削中的广泛应用具有重要的指导意义。  相似文献   

8.
This paper presents a mathematical model of dressing of vitrified CBN grinding wheels by a diamond cup dresser. It predicts the dressing forces during rotary diamond cup dressing of vitrified CBN grinding wheels. This model is based on the fracture of abrasive grits, the fracture of the bond and the contact forces between dresser and grinding wheel. It considers the kinematical influences and in particular speed ratio and overlap factor during the dressing process. A Weibull distribution is used to predict the probability of bond fracture and also the collision number between the diamond grits of a rotating dresser and the CBN grits. This model is validated by experimental results. The theoretical modeling values agree reasonably well with the experimental results. On the basis of this model the effect of different cup dressing parameters on dressing forces is theoretically discussed with the aim of establishing appropriate dressing process configurations. Furthermore the presented model provides a basis for further prediction of wheel topography and the grinding process.  相似文献   

9.
因受到激光高斯光束特性的影响,辐照在砂轮表面上的光斑大小和激光能量都跟随修整路径变化,难以实现高精度的弧形金刚石砂轮的修整,为此,提出采用激光粗修整和电火花精修整的复合修整方法。先用激光修整高效去除多余磨料层来得到弧形轮廓,再用一高精度弧形电极匹配该轮廓进行电火花修整,得到较高精度的弧形砂轮。在粒度为120的金刚石砂轮上试验修整半径为13 mm的弧形轮廓,最终修整出的弧形轮廓半径为13.006 mm,轮廓误差PV值为10.90 μm。最后,通过磨削氧化铝陶瓷验证了砂轮修整效果。检测磨削工件的弧形轮廓拟合半径为13.012 mm,轮廓误差PV值为11.33 μm。  相似文献   

10.
This paper presents a theoretical analysis of the surface bond removal mechanism for bronze-bond diamond grinding wheels using a pulsed laser. For the first time, the existence of a phase explosion phenomenon during the process of grinding wheel laser dressing is proposed, and the negative effects of a phase explosion on laser dressing are analyzed. Additionally, a theoretical study on phase explosion is conducted. The mechanism of bronze-bond diamond grinding wheel laser dressing is improved, and theoretical guidance for bronze-bond diamond grinding wheel laser dressing is provided. In the experiment, the processing parameters of the laser during phase explosion are studied, and a grinding test under the corresponding conditions is conducted. A high-speed camera is used to observe phase explosion in the laser dressing process. An ultra-depth 3-D microscope system is used to observe the topography of the bronze-bond diamond grinding wheel after dressing and grinding as well as the bronze wheel surface quality. It is concluded that to avoid phase explosion from occurring in the laser dressing of the bronze-bond grinding wheel, chip space around the bond must exist for the abrasive particle protrusions. The processing parameters of laser dressing under certain condition are optimized, and the desired dressing effect is achieved.  相似文献   

11.
针对圆弧形超硬砂轮修整难度大、修整精度低的问题,对树脂结合剂圆弧形金刚石砂轮进行了精密修整研究。设计制造了一种垂直式超硬砂轮圆弧修整器,通过修整试验研究了不同粒度的圆弧形砂轮在修整前后表面粗糙度、弧形精度、圆度、表面形貌的变化情况。砂轮修整前后对氮化硅陶瓷轴承套圈沟道进行了磨削,并测量了磨削后的轴承套圈沟形精度。研究结果表明:相比修整前,修整后砂轮表面粗糙度平均值由1.731 8 μm减小至0.772 4 μm,减小了55.4%;弧形精度平均值由33.604 7 μm减小至8.527 6 μm,减小了74.6%,修整后4个砂轮的弧形精度更加稳定,且随着砂轮粒度的减小,弧形精度略有减小趋势;砂轮圆度平均值由43.721 μm减小至18.002 μm,减小了58.8%,修整使大量新的磨粒露出。所设计的垂直式超硬砂轮圆弧形修整器可对圆弧砂轮进行精密修整,可改善圆弧形砂轮的弧形精度及圆度,修整后砂轮磨削的轴承套圈沟形精度得到了大幅提高。  相似文献   

12.
Metal-bonded superabrasive diamond grinding wheels have superior qualities such as high bond strength, high stability and high grindability. The major problems encountered are wheel loading and glazing, which impedes the effectiveness of the grinding wheel. Electrolytic in-process dressing (ELID) is an effective method to dress the grinding wheel during grinding. The wear mechanism of metal-bonded grinding wheels dressed using ELID is different form the conventional grinding methods because the bond strength of the wheel-working surface is reduced by electrolysis. The reduction of bond strength reduces the grit-depth-of-cut and hence the surface finish is improved. The oxide layer formed on the surface of the grinding wheel experiences macrofracture at the end of wheel life while machining hard and brittle workpieces. When the wheel wear is dominated by macrofracture, the wheel-working surface is free from loaded chips and worn diamond grits. When the oxide layer is removed from the wheel surface, the electrical conductivity of the grinding wheel increases, and that stimulates electrolytic dressing. The conditions applied to the pulse current influence the amount of layer oxidizing from the grinding wheel surface. Longer pulse ‘on’ time increases the wheel wear. Shorter pulse ‘on’ time can be selected for a courser grit size wheel since that type of wheel needs high grinding efficiency. Equal pulse ‘on’ and ‘off’ time is desired for finer grit size wheels to obtain stable and ultraprecision surface finish.  相似文献   

13.
The dressing of metal-bonded diamond grinding wheels is difficult despite their availabilities on hard and brittle materials. In this paper, a novel compound technology that combines abrasive waterjet (AWJ) and touch truing is proposed for dressing metal-bonded diamond grinding wheel precisely and efficiently. The dressing experiments of a coarse-grained and a fine-grained bronze-bonded diamond grinding wheel were carried out on a surface grinder with a developed AWJ system. The feasibility of this method was verified by analyzing the wheel runout, the truing forces, and the wheel surface topography. The variations of 3D surface roughness of wheel surface topography during the compound dressing process were quantitatively analyzed. The mechanism of AWJ and touch compound dressing is also discussed. Further, a reaction-bonded silicon carbide block was ground to validate the dressing quality. The experiment results indicate that the grinding wheels that were well dressed by the proposed technique leads to a smaller grinding force and a smaller surface roughness than that of undressed wheels.  相似文献   

14.
超高速陶瓷结合剂CBN砂轮关键制备技术的研究   总被引:1,自引:1,他引:0  
砂轮制备技术是实现超高速磨削的关键之一.本文介绍了超高速陶瓷结合剂砂轮的特点,综述了超高速陶瓷结合剂CBN砂轮的关键制备技术,分析了我国CBN磨料、砂轮结构、陶瓷结合剂、砂轮制备工艺等的研究现状,最后展望了超高速陶瓷CBN砂轮的研究及应用前景.  相似文献   

15.
ELID镜面磨削技术——砂轮快速修整技术的研究   总被引:2,自引:0,他引:2  
介绍了ELID磨削中采用电火花整形装置对金属结合剂超硬磨料砂轮进行整形修整的技术。修整后的砂轮径向跳动量小于1μm,砂轮表面光滑,形状精度高,磨粒等高性好,适于精密镜面磨削用,具有修整时间短、成本低、砂轮损耗小的优点。  相似文献   

16.
A grindability study of chopped strand mat glass fiber reinforced polymer laminates (CSM GFRP) has been carried out to evaluate the effects of abrasive types on grinding force ratio and area roughness at varying grinding parameters such as speed, feed and depth of cut. Performances of alumina (Al2O3) and cubic boron nitride (CBN) wheels were compared. Both wheels delivered the maximum grinding force ratios at low speed, high feed and low depth of cut. Alumina wheel produced smoother surface when grinding at low speed, low feed and high depth of cut. CBN wheel, on the other hand, gave smoother surface at high feed and low depth of cut conditions, regardless of speed. With CBN wheel, it is likely that a single grinding condition exists that maximizes grinding force ratio and minimizes area roughness. The findings indicate that CBN wheel exhibited higher grinding force ratio than alumina grinding wheel in general. CBN grinding wheel also outperformed alumina grinding wheel by producing smoother ground surface in most cases.  相似文献   

17.
Diamond wheels are widely used in high-precision grinding of hard and brittle materials; unfortunately, they are difficult to true and dress. This paper addresses that problem in that it proposes an effective dressing technique—mist-jetting electrical discharge dressing (MEDD) of nonmetal bond diamond grinding wheels using conductive coating. A conductive phase is coated on the wheel surface to increase the conductivity of the nonmetal bond. Electrical discharge model was built to analyze feasibility and select optimized parameters of MEDD. Experiments were conducted to evaluate the dressing performance of MEDD in terms of surface morphology of the wheel surface, grinding force, and surface roughness of the workpiece. Experimental results show that abrasive grains on the wheel protrude are satisfied. The discharge parameters have an important influence on the dressing result. The grinding force and the surface roughness of the workpiece significantly reduced after dressing.  相似文献   

18.
In this investigation, in order to improve bonding strength between superabrasive/metal matrix/grinding substrate, life span of grinding wheel, and grinding using small grits in continuous grinding simultaneously to fit for high speed and high precision machining in industry, coaxial powder feeding laser cladding method with CAD/CAM technology is introduced to manufacture textured CBN/CuSnTi–grinding wheels. The morphology of CBN grit on laser-cladding layer under optimized laser-cladding parameters and a pit created by fallen-off CBN on laser-cladding layer with lower laser–cladding energy density are observed by scanning electron microscope (SEM). The element distributions of interfaces of CBN/CuSnTi/AISI 1045 are analyzed by SEM and energy disperse spectroscope (EDS). The morphology and elements distribution of residual resultants on the surface of CBN grits etched by nitric acid are analyzed by SEM and EDS. Comparative-grinding process between laser cladding–grinding wheel (LCGW) and customized electroplated grinding wheel (EGW) is analyzed with grinding forces and temperature aspects respectively. The wear morphology of CBN grits on LCGW after grinding is observed by SEM. The results show that CBN grit with integrate cutting edges can protrude 50% height of its diameter on laser-cladding layer under optimized laser–cladding parameters. Fe, N, Ti, and B segregates attached to the interfaces of CBN/CuSnTi/AISI 1045 with Cu and Sn distributed uniformly in the laser-cladding layer. Residual resultants on CBN can be divided into two parts based on the distances from the surface of CBN grits. The grinding forces (Fz and Fy) and grinding temperature from LCGW are lower than those from EGW. The wear conditions of CBN on laser cladding are three parts: microfracture, cleavage plane, and wear-out.  相似文献   

19.
提出了一种带有粗磨区倾角θ的陶瓷结合剂CBN点磨削砂轮,这种新型砂轮具有磨除率高、加工精度好等优点。研究了磨削热产生与分配理论和红外测温原理。分别用不同θ角的砂轮在一系列磨削参数条件下磨削QT700材料的阶梯轴,用Thermovision A40M热像仪测量砂轮磨削工件时接触区的平均温度,得出了偏转角α、磨削深度ap、工件轴向进给速度vf和砂轮速度vs在磨削过程中对磨削温度的影响规律,并且比较了在同一组磨削参数下,三种不同θ角砂轮对磨削温度的影响情况。  相似文献   

20.
Abstract

Grinding processes require a high energy input per unit volume of material removed, which is converted to heat at the grinding zone, resulting in increased force and wear. In the present study, the influence of grinding parameters like work speed and depth of cut on grinding forces and energy was studied. An attempt has been made to study the forces and energy involved while grinding aluminium alloy (A356)/silicon carbide (SiC) composite material with different grinding wheels. Experiments were carried out on a surface grinding machine. Three different types of wheels like SiC, cubic boron nitride (CBN) and diamond wheels were used. The grinding forces increased with increase in depth of cut and work speed. SiC exhibited high grinding force compared to the CBN wheel. In the case of the diamond wheel, it was even less. The specific grinding energy was highest for the diamond wheel followed by CBN and SiC wheels. The specific grinding energy decreased with increase in depth of cut and work speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号