首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cubic ( c -ZrO2) and tetragonal zirconia ( t -ZrO2) phase stability regions in the system ZrO2–Y2O3–Ta2O5 were delineated. The c -ZrO2 solid solutions are formed with the fluorite structure. The t -ZrO2 solid solutions having a c/a axial ratio (tetragonality) smaller than 1.0203 display high fracture toughness (5 to 14 MPa · m1/2), and their instability/transformability to monoclinic zirconia ( m -ZrO2) increases with increasing tetragonality. On the other hand, the t -ZrO2 solid solutions stabilized at room temperature with tetragonality greater than 1.0203 have low toughness values (2 to 5 MPa · m1/2), and their transformability is not related to the tetragonality.  相似文献   

2.
The effect of Al2O3 and (Ti or Si)C additions on various properties of a (Y)TZP (yttria-stabilized tetragonal zirconia polycrystal)–Al2O3–(Ti or Si)C ternary composite ceramic were investigated for developing a zirconia-based ceramic stronger than SiC at high temperatures. Adding Al2O3 to (Y)TZP improved transverse rupture strength and hardness but decreased fracture toughness. This binary composite ceramic revealed a rapid loss of strength with increasing temperature. Adding TiC to the binary ceramic suppressed the decrease in strength at temperatures above 1573 K. The residual tensile stress induced by the differential thermal expansion between ZrO2 and TiC therefore must have inhibited the t - → m -ZrO2 martensitic transformation. It was concluded that a continuous skeleton of TiC prevented grain-boundary sliding between ZrO2 and Al2O3. In contrast, for the ternary material containing β-SiC in place of TiC, the strength decreased substantially with increasing temperature because of incomplete formation of the SiC skeleton.  相似文献   

3.
Gd2O3-doped Bi2O3 polycrystalline ceramics containing between 2 and 7 mol% Gd2O3 were fabricated by pressureless sintering powder compacts. The as-sintered samples were tetragonal at room temperature. Hightemperature X-ray diffraction (XRD) traces showed that the samples were cubic at elevated temperatures and transformed into the tetragonal polymorph during cooling. On the basis of conductivity measurements as a function of temperature and differential scanning calorimetry (DSC), the cubic → tetragonal as well as tetragonal → cubic → teansition temperatures were determined as a function of Gd2O3 concentration. The cubic → tetragonal transformation appears to be a displacive transformation. It was observed that additions of ZrO2 as a dopant, which is known to suppress cation interdiffusion in rare-earth oxide–Bi2O3 systems, did not suppress the transition, consistent with it being a displacive transition. Annealing of samples at temperatures 660°C for several hundred hours led to decomposition into a mixture of monoclinic and rhombohedral phases. This shows that the tetragonal polymorph is a metastable phase.  相似文献   

4.
CeCl3·7H2O and GdCl3·6H2O that were dissolved in water were precipitated with urea (NH2CONH2) to produce matrix agglomerates for three-component nano-reactors. Mixing hexamethylenetetramine with dilute nitric acid resulted in the formation of well-dispersed nano-particles of cyclotrimetilene trinitramine (C3H6N6O6) (RDX) in the solvent. Nano-reactors were produced by impregnating the nano-C3H6N6O6 into the matrix agglomerates of an intermediate complex of cerium and gadolinium compounds. Blast initiation of the C3H6N6O6 resulted in extremely rapid detonation and gaseous products formation at temperatures of 2000°–5000°C, which were compressed into a volume nearly equal to the initial volume of each RDX nano-particle. Multiple "nano-blasts" occurred in the volume of each nano-reactor. The impact of the blast waves led to fragmentation of the surrounding matter. The evolution of a large volume of gaseous products dissipated the heat of the process and limited temperature increase, thus reducing the possibility of local sintering among the primary particles. The short-term high temperature generated during the blasts enhanced the solid solubility of the metal oxides. Uniform aggregates of 22∼74 nm consisting of 6∼14 nm crystallites of gadolinia in ceria solid solution were synthesized.  相似文献   

5.
Equilibrium data at liquidus temperatures are presented for compositions in the quaternary system Y-Gd-Fe-O in ambient atmospheres of oxygen gas (pO2, = 760 mm Hg), air (PO2, = 159 mm Hg), and CO2 (pO2 variable). Incongruent melting occurred in yttrium-iron and gadolinium-iron garnet phases and in all intermediate garnet solid solutions in the three oxygen pressure sections studied. Fractionation in the yttrium/gadolinium ratio between oxide liquid and crystalline garnet phases in the quaternary system was not observed experimentally, indicating that unzoned (Y,Gd)3Fe5O12 crystals may be grown from a melt without special precautions to maintain a fixed Y/Gd ratio.  相似文献   

6.
The elastic properties of polycrystalline monoclinic Gd2O3 were determined by the sonic-resonance method. Volume-fraction porosity varied from 0.025 to 0.367 and temperature from room temperature to 1400°C. The Young's and shear moduli are linear functions of volume-fraction porosity, but the rate of their decrease with increasing porosity is less than that expected. The moduli decreased more rapidly than expected with increasing temperature. The Debye temperature is 362°K. With increasing temperature, the first Grueneisen constant, γ, decreases, whereas the second Grueneisen constant, δ, increases.  相似文献   

7.
Strength and fracture toughness results are presented for ZrO2 single crystals stabilized with Y2O3. The crystals (2 cm in diameter by 5 cm long) were prepared by skull melting. The partially stabilized compositions with 4 to 6 wt% Y2O3 showed a dramatic improvement in mechanical properties over the fully stabilized samples containing 20 wt% Y2O3, i.e. a strength exceeding 1000 MPa and a fracture toughness of 8 Mpa,.m 1/2 were achieved compared to 200 MPa and 2 Mpa.m1/2, respectively, for fully stabilized ZrO2 single crystals.  相似文献   

8.
The deformation and fracture mechanisms in tension were studied in single-crystal Er2O3-doped ZrO2 monofilaments processed by the laser-heated floating zone method. Tensile tests were carried out between 25° and 1400°C at different loading rates and the dominant deformation and fracture mechanisms were determined from the shape of the stress–strain curves, the morphology of the fracture surfaces, and the evidence provided by monofilaments deformed at high temperature and broken at ambient temperature. The tensile strength presented a minimum at 600°–800°C and it was controlled by the slow growth of a crack from the surface. This mechanism was also dominant in some monofilaments tested at 1000°C and above, while others showed extensive plastic deformation before fracture at these temperatures. The strength of plastically deformed monofilaments was significantly higher than those which failed by slow crack growth due to the marked strain hardening capacity of this material.  相似文献   

9.
Single crystals of superlattice-structured ferroelectrics composed of Bi4Ti3O12 and PbBi4Ti4O15 were grown and the properties of polarization hysteresis and leakage current along the a -axis were investigated. Oxidation treatment led to a marked increase in leakage current at room temperature, showing that electron hole acts as a detrimental carrier for electrical conduction. A well-developed polarization hysteresis with a remanent polarization of 41 μC/cm2 was observed, which is suggested to originate from the peculiar ferroelectric displacement of Bi in the Bi2O2 layers.  相似文献   

10.
11.
The wettability of binary and ternary glasses belonging to SiO2–Al2O3–ZrO2 diagram has been studied using the sessile drop technique at 1750° and 1800°C. The ternary SiO2–Al2O3–ZrO2 (90–5–5 wt%) glass has proved to be well appropriated as a molybdenum oxidation barrier coating. The addition of 5 wt% of MoO2 slightly improves its wettablity at higher temperatures without affecting its oxidation barrier properties. The Mo comes into the glass network as a mixture of Mo5+, Mo4+, and Mo6+. After oxidation at 1000°C in oxygen atmosphere, the molybdenum remains in the glass network as Mo6+.  相似文献   

12.
In this work several complementary techniques have been employed to carefully characterize the sintering and crystallization behavior of CaO–Al2O3–ZrO2–SiO2 glass powder compacts after different heat treatments. The research started from a new base glass 33.69 CaO–1.00 Al2O3–7.68 ZrO2–55.43SiO2 (mol%) to which 5 and 10 mol% Al2O3 were added. The glasses with higher amounts of alumina sintered at higher temperatures (953°C [lower amount] vs. 987°C [higher amount]). A combination of the linear shrinkage and viscosity data allowed to easily find the viscosity values corresponding to the beginning and the end of the sintering process. Anorthite and wollastonite crystals formed in the sintered samples, especially at lower temperatures. At higher temperatures, a new crystalline phase containing ZrO2 (2CaO·4SiO2·ZrO2) appeared in all studied specimens.  相似文献   

13.
Crack resistance characteristics and fatigue properties have been studied in four types of Y2O3–TZP ceramics including one containing Al2O3. The largely linear-elastic behavior connected with the very small transformation zone (<5 μm) explains the absence of any resistance-curve behavior and the flaw-controlled strength. The crack resistance shows high sensitivity to environment-induced subcritical crack growth. This influence is also operative in both types of fatigue experiments, i.e., under static and cyclic stresses, leading to reduced fatigue thresholds compared with K IC. While for static conditions a benefit is observed from enhanced t-m ZrO2 transformation, cyclic stresses provoke an additional fatigue effect. However, if the cyclic stresses are restricted to subthreshold values, cyclic stress-induced effects in the process zone provide an improvement of the materials being visible as a strengthening effect.  相似文献   

14.
Dielectric properties of pyrochlores compositions from Bi2O3–Nb2O5–NiO system were analyzed. The dielectric properties are dominated with a low-temperature relaxation that is typical for Bi-pyrochlores. A vast pyrochlore homogeneity range that exists in this system allowed to correlate characteristics of the observed relaxations with a compositional variations within the A2O'- and B2O6 pyrochlore sublattice. It was possible to make a distinction between different influences of the two sublattices, which can be satisfactorily described by the existing relaxation model for Bi3/2ZnNb3/2O7. A new relaxor-like room temperature relaxation was found for Bi1.6Ni0.57Nb1.43O6.55.  相似文献   

15.
The effect of Y2O3 content on the flexure strength of melt-grown Al2O3–ZrO2 eutectics was studied in a temperature range of 25°–1427°C. The processing conditions were carefully controlled to obtain a constant microstructure independent of Y2O3 content. The rod microstructure was made up of alternating bands of fine and coarse dispersions of irregular ZrO2 platelets oriented along the growth axis and embedded in the continuous Al2O3 matrix. The highest flexure strength at ambient temperature was found in the material with 3 mol% Y2O3 in relation to ZrO2(Y2O3). Higher Y2O3 content did not substantially modify the mechanical response; however, materials with 0.5 mol% presented a significant degradation in the flexure strength because of the presence of large defects. They were nucleated at the Al2O3–ZrO2 interface during the martensitic transformation of ZrO2 on cooling and propagated into the Al2O3 matrix driven by the tensile residual stresses generated by the transformation. The material with 3 mol% Y2O3 retained 80% of the flexure strength at 1427°C, whereas the mechanical properties of the eutectic with 0.5 mol% Y2O3 dropped rapidly with temperature as a result of extensive microcracking.  相似文献   

16.
Glasses with compositions 50Bi2O3– x Sb2O3–10B2O3–(40– x ) SiO2 ( x =0, 1, 3, 5, 8, 10) have been prepared by conventional melt quench technique. Substitution of Sb2O3 for SiO2 exerted an obvious effect on properties of glasses, especially, increased glass transition temperature ( T g) and crystalline temperature ( T c) greatly. Results of infrared transmission spectra attributed the effect to the formation of new bridging bonds of Sb–O–B and Sb–O–Si in glass network.  相似文献   

17.
In the binary system PbO–LazO3 only one compound, 4PbO.La2O3, exists; it is flanked by two eutectics. The structure of the compound, although of lower symmetry, is intimately related to the C modification of the rare earths. Below 800° to 1000°C, metastable solid solutions are formed from oxide mixtures coprecipitated from mixed solutions of the nitrates, the cubic parameter a = 5.66 A, if extrapolated to pure La2O3, corresponding to half the a parameter of the C form of La2O3. The solid solutions existing between the compositions La2O3–2Pb0 and pure La2O3 have a cubic face–centered lattice and obey Vegard's rule. The systems of PbO with Sm2O3 and Gd2O8 are quite similar to that with La2O3. The compound Sm2O3.4Pb0 decomposes at 1000°C with evaporation of PbO; Sm2O3 remains in the B modification.  相似文献   

18.
ZrO2–Al2O3 nanocomposite particles were synthesized by coating nano-ZrO2 particles on the surface of Al2O3 particles via the layer-by-layer (LBL) method. Polyacrylic acid (PAA) adsorption successfully modified the Al2O3 surface charge. Multilayer coating was successfully implemented, which was characterized by ξ potential, particle size. X-ray diffraction patterns showed that the content of ZrO2 in the final powders could be well controlled by the LBL method. The powders coated with three layers of nano-ZrO2 particles, which contained about 12 wt% ZrO2, were compacted by dry press and cold isostatically pressed methods. After sintering the compact at 1450°C for 2 h under atmosphere, a sintered body with a low pore microstructure was obtained. Scanning electron microscopy micrographs of the sintered body indicated that ZrO2 was well dispersed in the Al2O3 matrix.  相似文献   

19.
The influences of the Nb/Co ratio on electrical properties, densification behavior, and microstructural evolution were investigated on ceramics in the ternary system BaTiO3-Nb2O5-Co3O4. Temperature-stable dielectrics were obtained using either a large amount of Nb + Co or a large Nb/Co ratio. The sintering characteristics and electrical properties were studied for the niobium-rich composition (Nb/Co = 3.00; Comp.N) and the cobalt-rich composition (Nb/Co = 1.67; Comp.C) with the same Nb + Co amount of 2 at.%. The temperature characteristic of the dielectric constant was flat, irrespective of the firing temperature, for Comp.N, whereas it was dependent largely on the firing temperature for Comp.C. The grains did not grow in Comp.N but grew in Comp.C. The reaction of Nb2O5 and Co3O4 with BaTiO3 yielded secondary phases: Ba6Ti17O40 phase for Comp.N, and a barium-poor, titanium-rich, and cobalt-rich phase for Comp.C. These secondary phases formed a liquid phase during firing. Comp.N contained a larger amount of the secondary phase than Comp.C. It was concluded that the liquid phase contributed little to densification and microstructural evolution in the system BaTiO3-Nb2O5-Co3O4.  相似文献   

20.
In the system ZrO2-Al2O3, cubic ZrO2 solid solutions containing up to 40 mol% Al2O3 crystallize at low temperatures from amorphous materials prepared by the simultaneous hydrolysis of zirconium and aluminum alkoxides. The values of the lattice parameter, a, increase linearly from 0.5095 to 0.5129 nm with increasing Al2O3 content. At higher temperatures, the solid solutions transform into tetragonal ZrO2 and α-Al2O3. Pure ZrO2 crystallizes in the tetragonal form at 415° to 440°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号