首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
瓦斯爆炸引起支护木材起火的分析和判定   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究木材的支护煤层发生瓦斯爆炸后引起次生火灾的危险性,进行了瓦斯爆炸情形下支护木材次生火灾的发生机理的分析和研究。对包括不同初始浓度和体积的瓦斯爆炸火焰波的特性、爆炸后爆源临近区域的动态热环境进行了分析和研究。基于对爆炸后热环境的分析,应用快速热裂解仪开展了支护木材的快速热裂解实验,实验选取温度处于592~1 313 K,热作用持续时间分别为1,2,5,10 s。结合燃烧学基础理论,分别从可燃物、燃烧浓度极限、最低助燃氧浓度、感应期4个方面对瓦斯爆炸热环境下支护木材的起火可能性进行了分析和判定。得出,如果木材支护的煤层发生初始瓦斯浓度处于5.0%~9.25%之间的某个体积的瓦斯爆炸,则在爆炸后距爆源一定距离范围内就构成了引发支护木材着火的必要条件,就有瓦斯爆炸引起了支护木材次生火灾的可能。  相似文献   

2.
煤矿井下瓦斯爆炸的基本特性   总被引:31,自引:1,他引:30  
阐述了瓦斯爆炸发生的条件;从爆源能量、能量释放速度、爆源的特征时间和特征尺寸,以及爆炸的火焰温度、冲击波的压力、火焰和空气的运动速度、爆炸压力的上升速率等方面,探讨了瓦斯爆炸特征和爆炸特征;简要地介绍了瓦斯爆炸后的有害气体的组分。  相似文献   

3.
为了得到巷道瓦斯爆炸时的传播规律,利用大型试验巷道对不同质量、浓度的瓦斯-空气混合物的爆炸过程及传播规律进行了试验研究,分析了瓦斯爆炸时最大爆炸压力的时空变化特征、瓦斯爆炸火焰速度变化特征、火焰波及范围变化特征等规律,得出:1)最大爆炸压力的峰值较大,且随着瓦斯量的增加,出现最大压力峰值的位置距爆源点更近;2)最大爆炸压力呈现时间随与爆源的距离增大单调增加;3)随着瓦斯量增大,火焰传播速度绝对值明显增大,火焰传播速度最大点距爆源距离减小;4)火焰区长度可达原始瓦斯积聚区长度的3~6倍,但火焰传播距离并不与瓦斯量的增加成正比.研究所得结论可为矿井瓦斯事故的预防和治理提供参考.  相似文献   

4.
为了研究瓦斯爆炸后巷道两帮煤壁的热效应程度,对爆炸产生火焰波作用下煤壁的温度变化规律进行了研究。在热传导数学公式基础上,进行了对流换热系数、火焰波温度、火焰波的热作用时间等影响因素的分析。利用相关修正系数对对流换热系数进行了修正,结合相关管道瓦斯爆炸火焰厚度实验测量值进行了瓦斯爆炸火焰波的温度,以及在传播过程中对应点最强部分火焰波、整体火焰波对煤壁的热作用持续时间的探讨。并进行了对应点煤壁在火焰波的热作用下的温度变化规律的分析和计算。得出,整体火焰对热作用下的煤壁温度要比最强部分火焰作用下的煤壁温度要高,2种火焰情形下煤壁表层温度均随火焰波传播距离先增大后缓慢降低;煤壁的感温深度均属于10-1mm级别;煤壁表层温度变化率随着火焰传播距离的增加而逐渐增大。  相似文献   

5.
为了探索瓦斯在煤矿井下复杂巷网内爆炸后的超压演化规律及火焰传播特性,在实验室自行搭建了瓦斯爆炸试验系统,对甲烷体积分数为9.5%的瓦斯爆炸爆燃波传播规律进行了试验研究,并对瓦斯爆炸超压及火焰传播过程进行了数值模拟。试验与数值模拟结果表明:管网角联分支中,甲烷-空气预混气体爆炸后由于爆炸压力波的叠加,形成超压增高区域,但产生的火焰波很微弱,温度较低。并联分支中,随着爆燃波传播距离的增加,超压峰值和焰面传播速度呈逐渐减小的趋势,而火焰持续时间呈先增加、再减小的趋势。试验中火焰的最大传播距离为18.75 m,而数值模拟的传播距离为21.25 m,但试验值和模拟值的变化趋势一致。研究结论可对煤矿井下复杂巷道内瓦斯爆炸灾害的防控及救灾提供理论支持。  相似文献   

6.
《煤炭学报》2021,46(6)
为了提升煤矿瓦斯煤尘爆炸灾害的防治技术和效果,基于不同爆炸能量和隔爆屏障粉体质量浓度研究了大尺度巷道内主动隔爆系统的隔爆灭火性能。在敞开空间采用高速摄影技术测试了主动巷道隔爆系统隔爆屏障的形成过程及动态分布特征,隔爆器粉体能在120 ms时刻形成8.04 m~2有效断面,在1 200 ms时刻覆盖20 m,在空间内持续作用5 000 ms以上,得出驱动气体压力是影响隔爆屏障动态分布和覆盖距离的直接因素。在此基础上,采用断面7.2 m~2大型地下巷道,进行了瓦斯(煤尘)爆炸传播实验和隔爆实验,分析了实验过程中压力波、火焰阵面的传播特性。研究结果表明:粉体隔爆屏障能有效起到衰减压力波和扑灭爆炸火焰的作用,在粉体质量浓度较低时,爆炸火焰将穿越隔爆屏障,而随着质量浓度的增加,隔爆效果增强。在瓦斯隔爆实验中粉体质量浓度为277.8 g/m~3时,40 m位置爆炸超压衰减为36.4 kPa;在瓦斯煤尘爆炸隔爆实验中,粉体质量浓度为625.0 g/m~3时,70 m位置爆炸超压降低至54.0 kPa,对比同等强度的爆炸传播实验,最大压力下降率均大于60%。瓦斯(煤尘)爆炸隔爆实验中,驱动氮气和粉体所形成的隔爆屏障能有效起到冷却降温、隔绝窒息和消耗自由基的作用。随着粉体质量浓度的增加,爆炸火焰传播速度迅速下降,整个传播过程中的最大火焰速度位置前移,出现在隔爆器前端,爆炸火焰在隔爆器后20 m区域内被完全扑灭。  相似文献   

7.
《煤矿安全》2020,(2):1-4
针对矿井封闭火区内瓦斯爆炸特性问题,通过FLACS软件建立简单的密闭空间,模拟了瓦斯爆炸传播中的压力、温度和火焰的发展变化过程。结果表明:压力波的反射作用导致瓦斯爆炸压力曲线反复波动,出现多个压力峰值;各点温度在距离燃料区较近区域波动幅度小,在稍远的距离波动幅度大,而在距末端较近的距离,温度值较前面的监测点而言值非常小;火焰会出现反向传播的现象,之后出现湍流现象,直至反应结束。  相似文献   

8.
管道内瓦斯爆炸传播试验研究   总被引:9,自引:0,他引:9  
为了研发低浓度瓦斯抽放系统的安全设备,分别在DN500 mm和DN700 mm的试验管道内进行了瓦斯爆炸传播试验.通过动态信号综合测试系统采集了爆炸火焰和压力波的试验数据.试验结果表明:管道内瓦斯爆炸压力波峰值与传播距离呈二次函数关系,爆炸火焰到达时间与传播距离呈对数函数关系,且火焰传播速度随传播距离的增长而增大,管道直径对爆炸的传播有明显影响.  相似文献   

9.
为了研究井下巷道内瓦斯爆炸冲击载荷对壁面的动态响应,利用ANSYS/LS-DYNA建立圆形管道模型,在管道封闭端填充长度为5 m浓度为9.5%的瓦斯混合气体,对瓦斯爆炸冲击载荷作用下管道壁面的动态响应进行了数值模拟.得到管道壁面各测点速度、位移、超压随时间变化曲线.结果表明:距离爆源前方一定的距离,管道壁面响应更为强烈;从爆源处至开口端整体上壁面响应情况是先增大后减小的.研究成果能够对煤矿井下瓦斯爆炸源的确定和瓦斯爆炸事故调查提供一些理论指导和技术依据.  相似文献   

10.
在Φ700 mm管道中进行了瓦斯爆炸压力峰值、火焰传播速度的试验研究,对不同点火能量条件下的瓦斯—空气混合气体爆炸试验研究结果表明:爆炸压力峰值在沿管道的传播过程中,从爆源点附近是先增大后减小,然后再逐渐增大的,且最大压力峰值出现在出口附近;火焰传播速度随着传播距离的增大而逐渐增大;点火能量对爆炸压力峰值、火焰传播速度等都有重要影响。这些研究结果为煤矿井下隔抑爆装置和瓦斯输送管道隔抑爆装置的研制及安装技术规范的制订奠定了理论基础,也为煤矿瓦斯爆炸事故调查分析提供了理论依据。  相似文献   

11.
为了得出瓦斯爆炸诱发矿井支护木材次生火灾的机理,对矿井支护木材进行了微观热动分析。基于相关学者开展相关瓦斯爆炸所测实验数据,归纳、分析了瓦斯爆炸火焰波的特性。通过建立瞬态温度场数学模型,对不同火焰波温度、不同热作用时间支护木材浅表层的瞬态温度场进行了计算、分析和验证。建立了化学反应动力学模型,开展了同瓦斯爆炸条件基本一致的不同温度、不同热作用时间下矿井支护木材居里点快速热裂解实验。对比分析了和该模型相近的相关文献数据和本实验所测数据,得出:温度在550~1 050 K时,热裂解气体平稳增加,从3.3%上升到32.1%;焦油先增大然后逐渐平缓,从1.8%上升到48.8%,最高52.6%;焦炭逐渐减小,从94.7%降到19.1%。文献数据和实验数据吻合较好。  相似文献   

12.
瓦斯爆炸烟流浓度和温度的扩散规律   总被引:1,自引:0,他引:1       下载免费PDF全文
焦宇  周心权  段玉龙  龚武 《煤炭学报》2011,36(2):293-297
为了了解瓦斯爆炸后所产生高温、毒害性烟流的传播规律,对其进行了数学分析和数值模拟。基于模块化思想将烟流区域分成多个子区域进行分析,推导出了烟流浓度的传播模型;基于对流换热和热传导学建立了烟流温度的传播模型。对该一维烟流温度、浓度扩散模型进行了计算分析。以潘集三矿某掘进工作面发生瓦斯爆炸为例,利用流体模拟软件Fluent进行了烟流温度、CH4和CO浓度的模拟计算,得出了CH4和CO的浓度、烟流温度的传播规律。对比分析一维模型和Fluent二维计算结果可知二者结论是一致的。  相似文献   

13.
甲烷-煤尘复合爆炸威力实验   总被引:4,自引:0,他引:4       下载免费PDF全文
毕明树  王洪雨 《煤炭学报》2008,33(7):784-788
建立了由压力变送器、数据采集卡、计算机和电极点火装置组成的密闭空间甲烷-煤尘复合爆炸实验系统,动态响应时间小于1 ms,测试精度为0.5级.对甲烷-煤尘复合爆炸威力进行了系统的实验研究.结果表明:密闭空间内甲烷-煤尘复合爆炸的最危险爆炸条件为甲烷浓度5%,煤尘浓度500 g/m3,煤尘粒径26 μm,点火延迟时间40 ms;最大爆炸压力与甲烷浓度、煤尘浓度和点火延迟时间呈二次函数关系;最大爆炸压力随着煤尘粒径的增大而减小.甲烷的存在使得纯煤尘在空气中的爆炸下限降低,而爆炸压力增大;同样,煤尘的存在使得甲烷的爆炸下限降低,而爆炸压力升高.  相似文献   

14.
汪泉  沈兆武  郭子如  马宏昊 《煤炭学报》2012,37(10):1693-1697
为了研究煤粉对管内瓦斯预混火焰传播过程的影响,选用典型煤粉试样将其均匀铺于截面100 mm×100 mm、长1.5 m的有机玻璃方管底部,采用高速摄像机/光电传感器、微细热电偶、压力传感器等测试得到了管内瓦斯火焰传播过程中火焰传播速度、火焰瞬态温度、燃烧压力等参数,并初步分析了煤粉影响瓦斯火焰传播的机制。结果表明:有煤粉时火焰传播速度有所增加,但燃烧反应持续时间明显增长;内铺煤粉时管内火焰温度的半峰宽度增加,测点处瞬态温度曲线呈现出较为明显的“双峰”结构,说明活性的煤粉与瓦斯火焰形成瓦斯-煤粉复合火焰;有无煤粉时燃烧压力峰值差别不大,但有煤粉时压力波脉冲宽度增加。  相似文献   

15.
通过数值模拟方法对密闭容器内部超细水雾与甲烷/空气爆炸火焰的相互作用机理进行研究。采用大涡模型和部分预混燃烧模型分别对爆炸火焰流场和甲烷/空气燃烧过程进行计算;利用欧拉-拉格朗日方法对连续相和离散相方程进行耦合求解,实现气液两相间的质量、动量和能量的传递。通过实验验证了模型的准确性,并详细分析了水雾导致爆炸增强与抑制的机理。结果表明:水雾吸收的汽化潜热大于显热,且两者均远大于液滴的动量吸收作用;水雾吸热和汽化膨胀两种效应的共同作用导致增强和抑制爆炸两种相反的结果,液滴粒径、速度和水雾质量浓度将影响火焰面的温度、导温系数、脉动速度和湍流尺度,进而影响火焰传播速度和容器内部的热增速率。  相似文献   

16.
针对含氧煤层气变压吸附分离过程中存在的安全问题,通过实验的方法研究了吸附剂对瓦斯气体的抑爆和隔爆特性,旨在为煤矿抽排瓦斯分离过程中的安全生产提供参考。实验以甲烷与空气的混合气及甲烷与氧气的混合气为研究对象,其中甲烷体积分数分别为10%和36%。研究结果如下:当吸附剂处于爆炸气氛的环境中,在吸附剂装填区域进行点火引爆不会发生爆炸;对不装填吸附剂的区域进行点火引爆,火焰不能通过吸附剂层传递到其他区域;压力波通过吸附剂层时出现了较大的衰减,如甲烷与氧气的混合气在大气压下引爆后,压力由起爆容器的5.5 MPa迅速衰减到了0.03 MPa。研究结果表明:吸附剂具有抑爆和隔爆的特性,可对吸附分离系统起到安全防护作用。  相似文献   

17.
为研究含弱约束受限空间内甲烷爆炸压力升高及沿扩散管的传播特征,对不同体积分数甲烷的爆炸特征参数进行了系列实验。获得了含弱约束结构受限空间在不同浓度甲烷爆炸时的压力升高规律,研究表明,含弱约束受限空间内的甲烷爆炸压力升高趋势类似封闭空间,但压力峰值远小于封闭空间,封闭空间最大压力是含弱约束结构空间的3.2倍。由于若约束结构的存在,甲烷体积分数较低时破膜压力较大,腔体内高压持续时间较短,而接近爆炸当量浓度时腔体内高压持续时间增长。扩散管中的爆炸压力和火焰传播规律随甲烷体积分数变化呈现明显不同。在实验条件下,当甲烷体积分数低于7.0%时,破膜激波与火焰锋面时间差最大为5.255 ms,扩散管中的火焰主要为膨胀火焰。而甲烷体积分数高于7.4%时,破膜激波与火焰锋面时间差为28~40 ms,说明在管外发生了二次爆炸,以湍流火焰为主。爆炸压力的沿管道传播则分为3种情况,甲烷体积分数低于7.0%时,爆炸压力随传播距离增大而减小;甲烷体积分数为7.4%和11.0%时,爆炸压力随传播距离增大呈线性增大;甲烷浓度为当量浓度时,其压力传播特征类似于全管道甲烷爆炸的特征,随传播距离呈现锯齿形增大。实验结论对天然气长输管道、LNG和CNG储罐检修过程中的爆炸事故预防和含弱约束结构的其他气体泄爆具有参考意义。  相似文献   

18.
马铁华  崔春生  肖文聪 《煤炭学报》2014,39(9):1857-1861
由于煤层气赋存的地质特殊性,高能气体压裂技术应用于煤层气井增产需要进一步优化。煤层气井高能气体压裂器的研制开发,以及压裂工艺优化设计必须有基础数据作为支撑,建立煤层气井高能气体压裂器性能和机理研究的信息获取平台,设计了压裂多参数测试和校准系统,测试系统测量压力范围达到环空0~210 MPa,枪内0~1 000 MPa,工作温度-20~150℃,校准系统实现模拟井下高温(150℃)、高压(静压50 MPa,动压150 MPa)的测试环境。结合环空压力测试仪实测数据分析了煤层气井高能气体压裂的作用过程,表明此高能气体压裂器性能测试系统适于压裂器性能优化和动态参数获取。  相似文献   

19.
为揭示管道内甲烷-煤尘预混湍流特征及爆炸火焰传播过程,构建了竖直管道内甲烷-煤尘预混扩散及爆炸物理数学模型;基于流体力学及传热-传质理论,对管道内甲烷-煤尘扩散特征和爆炸过程进行了数值模拟。划分了管道内气固两相扩散特征阶段,分析了初始真空度和进气压力对扩散湍流强度的影响规律;研究了煤尘粒径、浓度及甲烷浓度对爆炸最大压力及最大爆炸压力上升速率的影响特征;揭示了管道内甲烷-煤尘预混爆炸过程中火焰传播特征及爆炸机制。结果表明:煤尘颗粒在竖直管道罐内扩散可分为快速注入、减速分散、稳定和沉降4个连续阶段,初始真空度及进气压力对湍流强度均有影响;爆炸过程中,不同时刻下管道整体爆炸压力场基本均匀分布。甲烷浓度、煤尘浓度及粒径与最大爆炸压力P_(max)及最大爆炸压力上升速率(dP/dt)_(max)均呈现二次函数关系;不同时刻下爆炸火焰结构及火焰高度、火焰传播速度的模拟与试验结果具有较好的一致性,火焰结构呈现"月牙-S-下凹月牙-指尖"传播至爆炸结束。温度分布不均,高温区集中在管道上部和中下部。火焰传播速度先增大后减小,后期呈现震荡性特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号