首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Enhancement of electromagnetic performance of A-sandwich radome using aperture-type Jerusalem cross frequency selective surface (FSS) is presented. The Jerusalem cross FSS array is embedded in the mid-plane of the core of Asandwich radome to enhance the EM performance parameters over the entire Xband. For modeling the Jerusalem cross FSS embedded radome panel and evaluation of its EM performance parameters, equivalent transmission line method in conjunction with equivalent circuit model is used. A comparative study of Jerusalem cross FSS embedded A-sandwich radome and A-sandwich radome of identical material and thickness (core and skin layers) indicate that the new wall configuration has superior EM performance as compared to the A-sandwich wall alone configuration. The excellent EM performance of Jerusalem cross FSS embedded A-sandwich radome makes it a desirable choice for the design of normal incidence radomes (hemispherical/ cylindrical), near-normal incidence radomes (paraboloidal) and highly streamlined airborne nosecone radomes.  相似文献   

2.
Soft computing data-driven modeling (DDM) techniques have attracted the attention of many researchers across the globe as they do not require deep knowledge of the complex physical process. In the present research, data-driven based models have been developed using support vector regression (SVR), multilayer perceptron neural network (MLP), radial basis function neural network (RBFNN) and general regression neural networks (GRNN) techniques for predicting the bed depth profile of solids flowing in a rotary kiln. The performances of the developed models were compared and evaluated against the experimental results in terms of statistical measures such as coefficient of determination (R2), and average absolute relative error (AARE). The obtained results and findings from this research have revealed that data-driven models can predict the bed depth profile of solids flowing in a rotary kiln quite accurately. The SVR-based model exhibited the lowest AARE value of 1.72% and highest R2 value of 0.9981 while GRNN, RBFNN, and MLP models gave corresponding values of AARE as 3.69%, 55.13%, 98.15% and those of R2 as 0.9898, 0.0052 and 0.0081, respectively. Moreover, the developed DDM-based models i.e. GRNN, RBFNN, and MLP models overcame the limitations of the existing solutions which involved iterative numerical procedure entailing high degree of computational complexity.  相似文献   

3.
In this study, the influence of hardness (H) and spindle speed (N) on surface roughness (Ra) in hard turning operation of AISI 4140 using CBN cutting tool has been studied. A multiple regression analysis using analysis of variance is conducted to determine the performance of experimental values and to show the effect of hardness and spindle speed on the surface roughness. Artificial neural network (ANN) and regression methods have been used for modelling of surface roughness in hard turning operation of AISI 4140 using CBN cutting tool. The input parameters are selected to be as hardness and spindle speed and the output is the surface roughness. Regression and artificial neural network optimum models have been presented for predicting surface roughness. The predicted surface roughness by the employed models has been compared with the experimental data which shows the preference of ANN in prediction of surface roughness during hard turning operation. Finally, a reverse ANN model is constructed to estimate the hardness and spindle speed from surface roughness values. The results indicate that the reverse ANN model can predict hardness for the train data and spindle speed for the test data with a good accuracy but the predicted spindle speed for the train data and the predicted hardness for the test data don’t have acceptable accuracy.  相似文献   

4.
Time series data (TSD) originating from different applications have dissimilar characteristics. Hence for prediction of TSD, diversified varieties of prediction models exist. In many applications, hybrid models provide more accurate predictions than individual models. One such hybrid model, namely auto regressive integrated moving average – artificial neural network (ARIMA–ANN) is devised in many different ways in the literature. However, the prediction accuracy of hybrid ARIMA–ANN model can be further improved by devising suitable processing techniques. In this paper, a hybrid ARIMA–ANN model is proposed, which combines the concepts of the recently developed moving average (MA) filter based hybrid ARIMA–ANN model, with a processing technique involving a partitioning–interpolation (PI) step. The improved prediction accuracy of the proposed PI based hybrid ARIMA–ANN model is justified using a simulation experiment. Further, on different experimental TSD like sunspots TSD and electricity price TSD, the proposed hybrid model is applied along with four existing state-of-the-art models and it is found that the proposed model outperforms all the others, and hence is a promising model for TSD prediction.  相似文献   

5.
This paper reports the performance of two different artificial neural networks (ANN), Multi Layer Perceptron (MLP) and Radial Basis Function (RBF) compared to conventional software for prediction of the pore size of the asymmetric polyethersulfone (PES) ultrafiltration membranes. ANN has advantages such as incredible approximation, generalization and good learning ability. The MLP are well suited for multiple inputs and multiple outputs while RBF are powerful techniques for interpolation in multidimensional space. Three experimental data sets were used to train the ANN using polyethylene glycol (PEG) of different molecular weights as additives namely as PEG 200, PEG 400 and PEG 600. The values of the pore size can be determined manually from the graph and solve it using mathematical equation. However, the mathematical solution used to determine the pore size and pore size distribution involve complicated equations and tedious. Thus, in this study, MLP and RBF are applied as an alternative method to estimate the pore size of polyethersulfone (PES) ultrafiltration membranes. The raw data needed for the training are solute separation and solute diameter. Values of solute separation were obtained from the ultrafiltration experiments and solute diameters ware calculated using mathematical equation. With the development of this ANN model, the process to estimate membrane pore size could be made easier and faster compared to mathematical solutions.  相似文献   

6.
Accurate short-term load forecasting (STLF) is one of the essential requirements for power systems. In this paper, two different seasonal artificial neural networks (ANNs) are designed and compared in terms of model complexity, robustness, and forecasting accuracy. Furthermore, the performance of ANN partitioning is evaluated. The first model is a daily forecasting model which is used for forecasting hourly load of the next day. The second model is composed of 24 sub-networks which are used for forecasting hourly load of the next day. In fact, the second model is partitioning of the first model. Time, temperature, and historical loads are taken as inputs for ANN models. The neural network models are based on feed-forward back propagation which are trained and tested using data from electricity market of Iran during 2003 to 2005. Results show a good correlation between actual data and ANN outcomes. Moreover, it is shown that the first designed model consisting of single ANN is more appropriate than the second model consisting of 24 distinct ANNs. Finally ANN results are compared to conventional regression models. It is observed that in most cases ANN models are superior to regression models in terms of mean absolute percentage error (MAPE).  相似文献   

7.
A simple model for spot weld joints is desirable in body-in-white automotive structures which contains thousands of them. Hence, comparative performance and failure prediction study of six simplified spot weld models in terms of their geometric and constitutive properties are presented in this paper. The stiffness characteristics of these models under tensile loading condition were compared with the experimental results. It was found that the current spot weld modelling practice in the automotive industry predict the strength with 45.33% of error. To simulate the joint failure a material damage criterion correlating ultimate tensile strength of material was implemented in the developed models. The comparative study with respect to the accuracy was also related with the computational cost incurred by the different models. Hence, suitable modelling conditions to design a finite element model for spot welded joints are established which is very simple to develop, relatively cheap in terms of computational costs but yet predicts reasonably accurate results.  相似文献   

8.
This paper illustrates the application of artificial neural network (ANN) for prediction of performances in competitive adsorption of phenol and resorcinol from aqueous solution by conventional and low cost carbonaceous adsorbent materials, such as activated carbon (AC), wood charcoal (WC) and rice husk ash (RHA). The three layer's feed forward neural network with back propagation algorithm in MATLAB environment was used for estimation of removal efficiencies of phenol and resorcinol in bi-solute water environment based on 29 sets of laboratory batch study results. The input parameters used for training of the neural network include amount of adsorbent (g/L), initial concentrations of phenol (mg/L) and resorcinol (mg/L), contact time (h), and pH. The removal efficiencies of phenol and resorcinol were considered as an output of the neural network. The performances of the developed ANN models were also measured using statistical parameters, such as mean error, mean square error, root mean square error, and linear regression. The comparison of the removal efficiencies of pollutants using ANN model and experimental results showed that ANN modeling in competitive adsorption of phenolic compounds reasonably corroborated with the experimental results.  相似文献   

9.
Size effect is a major issue in concrete structures and occurs in concrete in any loading conditions. In this study, size effect on concrete cubic compressive strength is modeled with a back-propagation neural network. The main advantage in using an artificial neural network (ANN) technique is that the network is built directly from experimental data without any simplifying assumptions via the self-organizing capabilities of the neural network. The proposed ANN model is verified by using 27 experimental data sets collected from the literature. For the large specimens, a modified ANN is developed in the paper to further improve the forecast accuracy. The results demonstrate that the ANN-based size effect model has a strong potential to predict the cubic compressive strength of concrete  相似文献   

10.
In ceramic-matrix composites (CMCs) a weak fibre/matrix interface is required to achieve satisfactory toughening so that the composite exhibits damage tolerant characteristics. Due to the presence of such a weak interface, debonding and sliding occur at the interface making the mechanics of the material very complex. As a result, developing analytical models for simulating the macromechanical behaviour of these composites is extremely difficult and necessitates simplifying assumptions compromising accuracy. In the present paper, a novel approach to modelling the macromechanical behaviour of CMCs, using the artificial neural network (ANN) approach has been presented. The ability of neural networks in learning the complex multi-parametric interaction among the various microstructural parameters has been demonstrated with an example of SiC/SiC ceramic composite. An artificial neural network has been used to postulate the macromechanical behaviour of SiC (matrix)/SiC (fibre) composite. The training examples for the network have been generated through an accurate micromechanical finite element analysis that models the interfacial debonding and sliding realistically. The network learning is demonstrated and the network is validated by asking it to predict the behaviour of the composite for new specimens. Various stages in the development of ANN such as the preparation of training set, selection of a network configuration, training of the net and a testing scheme, etc, have been addressed at length in this paper.  相似文献   

11.
The mechanical behaviour of fibre-reinforced polymer composites (FRPCs) is considered very complex due to many factors such as composition, material type, manufacturing process and end user applications. This article presents the mechanical properties and artificial neural network (ANN) modelling results of cross-ply laminated FRPCs. Twenty composite samples were fabricated by varying the number of layers of carbon fibre and glass fibre as reinforcement and polyphenylene sulphide and high-density polyethylene as matrix. Mechanical properties were measured in terms of flexural modulus, hardness, impact and transverse rupture strength. Multilayer feed-forward backpropagation ANN approach was used to predict the mechanical properties by using material type, composition and number of reinforcement and matrix layers as input variables. From 20 data patterns, 16 were used for network training and remaining 4 were used to test the models. Furthermore, trend analysis was also performed to understand the influence of inputs on developed models. It is evident from the ANN prediction results that there is good correlation between predicted and actual values within acceptable mean absolute error. The outcomes of this research will help to reduce cost and time by eliminating tedious composite property measurements and to fabricate tailored composites meeting application requirements.  相似文献   

12.
In this paper we have compared the abilities of two types of artificial neural networks (ANN): multilayer perceptron (MLP) and wavelet neural network (WNN) — for prediction of three gasoline properties (density, benzene content and ethanol content). Three sets of near infrared (NIR) spectra (285, 285 and 375 gasoline spectra) were used for calibration models building. Cross-validation errors and structures of optimized MLP and WNN were compared for each sample set. Four different transfer functions (Morlet wavelet and Gaussian derivative – for WNN; logistic and hyperbolic tangent – for MLP) were also compared. Wavelet neural network was found to be more effective and robust than multilayer perceptron.  相似文献   

13.
This work presents the empirical study of a reciprocating compressor using Artificial Intelligence to model it. Several artificial neural networks were used to model three energy parameters of the compressor with high precision. The number of neurons in each ANN was optimized to use the minimum number of neurons without compromising accuracy; very few neurons were used when comparing with other works. Computer simulations show that the ANN model for the mass flow rate has the highest accuracy when compared with the models for the discharge temperature and power consumption. These simulations also illustrate that the ANN model for the discharge temperature presented the lowest accuracy.Using the ANN model, 3D plots were built to analyze the energy behavior of the compressor.  相似文献   

14.
In the present work, a novel machine learning computational investigation is carried out to accurately predict the solubility of different acids in supercritical carbon dioxide. Four different machine learning algorithms of radial basis function, multi-layer perceptron (MLP), artificial neural networks (ANN), least squares support vector machine (LSSVM) and adaptive neuro-fuzzy inference system (ANFIS) are used to model the solubility of different acids in carbon dioxide based on the temperature, pressure, hydrogen number, carbon number, molecular weight, and the dissociation constant of acid. To evaluate the proposed models, different graphical and statistical analyses, along with novel sensitivity analysis, are carried out. The present study proposes an efficient tool for acid solubility estimation in supercritical carbon dioxide, which can be highly beneficial for engineers and chemists to predict operational conditions in industries.  相似文献   

15.
Although mathematical modelling techniques are very well developed, some production processes are difficult to be modelled by these modelling techniques or their math-models are too complex to be used for real-time control due to uncertain, imprecise and vague parameters’ relations. Spray dryers are complex, dynamic and ill-defined production processes. Their product (powder) must have a controllable size distribution consisting of spherical shapes and free-flowing characteristic of particles, which is required for an ideal pressing operation to overcome the product sticking in the dies. The relations of production process' parameters are highly non-linear. In this study, these non-linear parameters were studied and three different soft-computing intelligent models were developed and used to predict uncertain parameter relations. The first is the fuzzy model of the production process; the others are the artificial neural network (ANN) architectures; the back-propagation multilayer perceptron (BPMLP) algorithm and the radial basis function network (RBF). To deal with uncertainty and vagueness of the production system, a method (methodology) based on a fuzzy hierarchical analytic process modelling approach and two ANN approaches was applied. The performance of the BPMLP algorithm was found most vigorous than the RBF and fuzzy modelling approach.  相似文献   

16.
Reliability analysis of structures using neural network method   总被引:13,自引:1,他引:13  
In order to predict the failure probability of a complicated structure, the structural responses usually need to be estimated by a numerical procedure, such as finite element method. To reduce the computational effort required for reliability analysis, response surface method could be used. However the conventional response surface method is still time consuming especially when the number of random variables is large. In this paper, an artificial neural network (ANN)-based response surface method is proposed. In this method, the relation between the random variables (input) and structural responses is established using ANN models. ANN model is then connected to a reliability method, such as first order and second moment (FORM), or Monte Carlo simulation method (MCS), to predict the failure probability. The proposed method is applied to four examples to validate its accuracy and efficiency. The obtained results show that the ANN-based response surface method is more efficient and accurate than the conventional response surface method.  相似文献   

17.

Time series forecasting plays a significant role in numerous applications, including but not limited to, industrial planning, water consumption, medical domains, exchange rates and consumer price index. The main problem is insufficient forecasting accuracy. The present study proposes a hybrid forecasting methods to address this need. The proposed method includes three models. The first model is based on the autoregressive integrated moving average (ARIMA) statistical model; the second model is a back propagation neural network (BPNN) with adaptive slope and momentum parameters; and the third model is a hybridization between ARIMA and BPNN (ARIMA/BPNN) and artificial neural networks and ARIMA (ARIMA/ANN) to gain the benefits of linear and nonlinear modeling. The forecasting models proposed in this study are used to predict the indices of the consumer price index (CPI), and predict the expected number of cancer patients in the Ibb Province in Yemen. Statistical standard measures used to evaluate the proposed method include (i) mean square error, (ii) mean absolute error, (iii) root mean square error, and (iv) mean absolute percentage error. Based on the computational results, the improvement rate of forecasting the CPI dataset was 5%, 71%, and 4% for ARIMA/BPNN model, ARIMA/ANN model, and BPNN model respectively; while the result for cancer patients’ dataset was 7%, 200%, and 19% for ARIMA/BPNN model, ARIMA/ANN model, and BPNN model respectively. Therefore, it is obvious that the proposed method reduced the randomness degree, and the alterations affected the time series with data non-linearity. The ARIMA/ANN model outperformed each of its components when it was applied separately in terms of increasing the accuracy of forecasting and decreasing the overall errors of forecasting.

  相似文献   

18.
Among the key challenges present in the modelling and optimisation of composite structures against impact is the computational expense involved in setting up accurate simulations of the impact event and then performing the iterations required to optimise the designs. It is of more interest to find good designs given the limitations of the resources and time available rather than the best possible design. In this paper, low cost but sufficiently accurate finite element (FE) models were generated in LS Dyna for several experimentally characterised materials by semi-automating the modelling process and using existing material models. These models were then used by an optimisation algorithm to generate new hybrid offspring, leading to minimum weight and/or cost designs from a selection of isotropic metals, polymers and orthotropic fibre-reinforced laminates that countered a specified impact threat. Experimental validation of the optimal designs thus identified was then successfully carried out using a single stage gas gun. With sufficient computational hardware, the techniques developed in this pilot study can further utilise fine meshes, equations of state and sophisticated material models, so that optimal hybrid systems can be identified from a wide range of materials, designs and threats.  相似文献   

19.
This paper proposes application of neuro fuzzy and neural network for predicting debonding strength of retrofitted masonry elements. In order to achieve high-fidelity model, this study uses extensive experimental databases for bond test results between Fiber Reinforced Polymer (FRP) and masonry elements by collecting existing bond test subassemblage tests from the literature. Various influential parameters that affect debonding resistance including thickness of the FRP strip, width of the FRP strip, elastics modulus of the FRP, bonded length, tensile strength of the masonry block and width of the masonry block are considered as input parameters to the artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS). Test results of the ANN and ANFIS models were compared with multiple nonlinear regression, multiple linear regression and existing bond strength models. The accuracy of the optimal MNLR model was increased by 39% and 23% with respect to RMSE and MAE criteria using ANFIS. The comparison results indicated that the ANN and ANFIS models performed better than the other models and could be successfully used for prediction of debonding strength of retrofitted masonry elements.  相似文献   

20.
Artificial neural network (ANN) analysis was used to predict the permeability of selected compounds through Caco-2 cell monolayers. Previously reported models, which were shown to be useful in the prediction of permeability values, use many structural parameters. More complex equations have also been proposed using both linear and non-linear relationships, including ANN analysis and various structural parameters. But proposed models still need to be developed using different neuron patterns for more precise predictions and a better understanding of which factors affect the permeation. To develop a simple and useful model or method for easy prediction is also a general need. Permeability coefficients (log kp) were obtained from various literature sources. Some structural parameters were calculated using computer programs. Multiple linear regression analysis (MLRA) was used to predict Caco-2 cell permeability for the set of 50 compounds (r2 = 0.403). A successful ANN model was developed, and the ANN produced log kp values that correlated well with the experimental ones (r2 = 0.952). The permeability of a compound, famotidine, which has not previously been studied, through the Caco-2 cell monolayer was investigated, and its permeability coefficient determined. It was then possible to compare the experimental data with that predicted using the trained ANN with previously determined Caco-2 cell permeability values and structural parameters of compounds. The model was also tested using literature values. The developed and described ANN model in this publication does not require any experimental parameters; it could potentially provide useful and precise prediction of permeability for new drugs or other penetrants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号